【流体】基于Sharfetter-Gummel和改进的Sharfetter-Gummel计算对流扩散方程的通量附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

对流扩散方程是描述流体流动、传热、传质等物理现象的基本方程之一。高效且准确地求解对流扩散方程对于科学研究和工程应用至关重要。Sharfetter-Gummel (S-G) 格式及其改进形式是广泛应用于离散对流扩散方程的数值方法。本文深入探讨了基于S-G和改进S-G格式计算对流扩散方程通量的原理、实现方法以及优缺点。通过详细的理论分析和数值实验对比,评估了两种格式在不同流场条件下的表现,并对未来的研究方向进行了展望。

1. 引言

在流体力学、传热学和化学工程等领域,对流扩散方程扮演着核心角色。它描述了物质或能量在流体中的传输过程,该过程受到对流和扩散两种物理机制的共同影响。对流输运依赖于流体的速度场,而扩散输运则源于浓度或温度梯度。精确求解对流扩散方程对于理解和预测复杂流体系统的行为至关重要。

数值方法是求解对流扩散方程的主要手段。有限差分法、有限体积法和有限元法等方法被广泛应用于离散对流扩散方程。然而,由于对流项的存在,直接使用中心差分格式可能导致数值振荡,尤其是在高Pe数 (Peclet number) 的情况下。Pe数表示对流效应与扩散效应之比,在高Pe数情况下,对流效应占据主导地位,简单的离散格式容易产生不稳定的结果。

为了克服上述问题,研究人员提出了许多稳定化方法,例如迎风格式、QUICK格式、TVD格式等。其中,Sharfetter-Gummel (S-G) 格式是一种重要的迎风型离散格式,最初用于半导体器件的模拟。该格式通过指数型函数来近似表示节点间的通量,能够有效地抑制数值振荡。近年来,S-G格式及其改进形式被广泛应用于求解各种流体问题。

本文旨在深入研究基于S-G和改进S-G格式计算对流扩散方程通量的原理和应用。我们将详细介绍两种格式的推导过程,分析它们的优缺点,并通过数值实验对比它们在不同流场条件下的表现。最后,我们将对未来的研究方向进行展望。

2. 对流扩散方程及S-G格式

2.1 对流扩散方程

考虑一个二维稳态对流扩散方程:

∇ ⋅ (uC - Γ∇C) = 0

其中,C 表示待求解的物理量(例如浓度或温度),u 表示速度矢量,Γ 表示扩散系数。上式可以展开为:

u ⋅ ∇C - ∇ ⋅ (Γ∇C) = 0

在笛卡尔坐标系下,上式可以进一步写成:

u_x ∂C/∂x + u_y ∂C/∂y - ∂/∂x(Γ ∂C/∂x) - ∂/∂y(Γ ∂C/∂y) = 0

2.2 Sharfetter-Gummel (S-G) 格式

S-G格式的核心思想是使用指数函数来近似表示节点间的通量。考虑一维对流扩散方程:

d/dx (uC - Γ dC/dx) = 0

假设 u 和 Γ 为常数,对上式进行积分,可以得到:

uC - Γ dC/dx = J (常数)

其中,J 表示通量。对上式进行整理,得到:

dC/dx = (uC - J) / Γ

对上式进行积分,可以得到:

∫(C_i)^(C_(i+1)) dC / (uC - J) = ∫(x_i)^(x_(i+1)) dx / Γ

求解上式积分,得到:

(1/u) ln|(uC_(i+1) - J) / (uC_i - J)| = (x_(i+1) - x_i) / Γ

令 Δx = x_(i+1) - x_i, 整理上式,得到:

(uC_(i+1) - J) / (uC_i - J) = exp(uΔx / Γ) = exp(Pe)

其中,Pe = uΔx / Γ 为局部 Pe 数。从上式解出通量 J,得到:

J = u (C_i exp(Pe) - C_(i+1)) / (exp(Pe) - 1) = u (C_i - C_(i+1) exp(-Pe)) / (1 - exp(-Pe))

定义 Peclet 函数 B(Pe) = Pe / (exp(Pe) - 1), 则上式可以写成:

J = u (C_i B(Pe) - C_(i+1) B(-Pe))

在二维情况下,可以将 S-G 格式应用到 x 和 y 两个方向上,分别计算相应的通量。

2.3 S-G格式的离散形式

以二维为例,采用有限体积法对对流扩散方程进行离散。将计算区域划分为若干控制体,对每个控制体积分方程,得到:

∫∫ (∇ ⋅ (uC - Γ∇C)) dA = 0

应用高斯散度定理,将面积分转化为边界上的线积分:

∮ (uC - Γ∇C) ⋅ n dl = 0

其中,n 表示控制体边界的法向量,dl 表示边界上的线段。对每个边界上的通量进行离散,使用 S-G 格式计算对流通量和扩散通量。例如,对于连接节点 i 和节点 i+1 的边界,通量可以近似为:

J_(i, i+1) = u_(i, i+1) (C_i B(Pe_(i, i+1)) - C_(i+1) B(-Pe_(i, i+1))) - Γ (C_(i+1) - C_i) / Δx

将所有边界上的通量求和,即可得到控制体的离散方程。

3. 改进的S-G格式

S-G 格式虽然能够有效地抑制数值振荡,但在某些情况下,精度可能不高。为了提高精度,研究人员提出了许多改进的 S-G 格式。常见的改进方法包括:

  • 高阶 S-G 格式:

     使用更高阶的插值函数来近似节点间的物理量分布,从而提高精度。

  • 通量限制器 (Flux Limiter) 方法:

     在 S-G 格式的基础上引入通量限制器,以限制通量的幅度,避免数值振荡的产生。

  • 混合格式:

     将 S-G 格式与其他高精度格式(例如中心差分格式)进行混合,以兼顾稳定性和精度。

一种常见的改进方法是采用一种加权平均的S-G通量,其基本思想是考虑到节点间的速度方向。

3.1 加权平均的S-G通量

考虑节点 i 和相邻节点 i+1 之间的通量,定义一个加权因子 α,该因子依赖于节点间的速度方向。例如,当 u_(i, i+1) > 0 时,α = 1;当 u_(i, i+1) < 0 时,α = 0。然后,将 S-G 通量表示为:

J_(i, i+1) = α J_(S-G, i->i+1) + (1 - α) J_(S-G, i+1->i)

其中,J_(S-G, i->i+1) 表示从节点 i 到节点 i+1 的 S-G 通量,J_(S-G, i+1->i) 表示从节点 i+1 到节点 i 的 S-G 通量。这种加权平均方法可以更加准确地捕捉对流效应,从而提高精度。

4. 数值实验与结果分析

为了评估 S-G 和改进 S-G 格式的表现,我们进行了一系列数值实验。考虑一个经典的测试算例:二维方腔驱动流 (Lid-Driven Cavity Flow)。在该算例中,一个方形腔体的顶部壁面以恒定速度移动,驱动腔体内部流体的流动。我们使用 S-G 格式和加权平均 S-G 格式分别求解该问题的稳态对流扩散方程,并比较它们的计算结果。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值