三相PWM整流器有限集模型预测电流控制附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代电力电子技术飞速发展的背景下,电力系统的稳定性、效率和功率因数成为了日益重要的关注焦点。三相脉宽调制(PWM)整流器作为实现交流到直流能量转换的关键装置,在可再生能源并网、电动汽车充电、工业驱动等领域发挥着至关重要的作用。传统的PI控制方法虽然在许多应用中取得了成功,但其控制性能容易受到系统参数变化和非线性的影响,且动态响应速度和对谐波抑制能力有待提升。近年来,基于模型的控制策略,特别是模型预测控制(MPC),因其能够直接处理系统约束、具有优异的动态响应和良好的鲁棒性而受到广泛关注。本文将深入探讨三相PWM整流器基于有限集模型预测电流控制(Finite Control Set Model Predictive Current Control, FCS-MPCC)的研究进展、基本原理、优势与挑战,并展望其未来的发展趋势。

一、三相PWM整流器基本原理与控制需求

三相PWM整流器通常采用电压源型拓扑结构,由六个开关器件(如IGBT或MOSFET)组成一个全桥逆变器,通过控制开关器件的通断状态,将交流侧的电压转换为直流侧的电压。其主要功能包括:

  1. 功率因数校正 (PFC):

    通过控制输入电流的波形与输入电压同相,实现单位功率因数运行,减少无功损耗,提高电能质量。

  2. 直流侧电压调节:

    根据负载需求,稳定控制直流侧输出电压。

  3. 电网电流谐波抑制:

    通过高频开关,减小输入电流中的谐波成分,满足电网谐波标准。

为了实现上述功能,需要精确控制整流器的开关状态,以调节输入电流和直流侧电压。传统的控制方法包括滞环控制、电压定向控制(VOC)等,这些方法各有优缺点。例如,滞环控制具有快速的动态响应,但开关频率不固定;VOC则需要进行坐标变换,控制结构相对复杂。因此,探索更优越的控制策略具有重要意义。

二、有限集模型预测电流控制 (FCS-MPCC) 基本原理

FCS-MPCC是一种基于离散时间模型的预测控制方法,其核心思想是利用系统模型预测未来一段时间内系统的状态,并根据一个预设的成本函数,选择在有限个可能的开关状态中,使得成本函数最小的那个开关状态应用于下一个控制周期。对于三相PWM整流器而言,其开关状态是有限的,通常为8个(两个桥臂的开关状态,每个桥臂有两种状态,加上零矢量)。

FCS-MPCC的主要步骤如下:

  1. 系统模型建立:建立三相PWM整流器的离散时间模型。通常采用电压平衡方程来描述交流侧电压、电感电压、电感电流和开关状态之间的关系。

  2. 预测模型:基于离散时间模型,利用当前时刻的采样值和可能的开关状态,预测下一时刻的系统状态,例如电流值。由于开关状态有限,可以对每一个可能的开关状态进行预测。

    i(k+1)=f(i(k),u(k),v(k))

  3. 成本函数设计:设计一个成本函数,用于衡量不同开关状态下的控制性能。对于电流控制,成本函数通常包含电流跟踪误差项,也可能包含开关频率最小化、直流侧电压稳定等其他控制目标。

  4. 优化与选择:遍历所有可能的开关状态,计算每一个开关状态对应的成本函数值。选择使得成本函数最小的那个开关状态作为下一控制周期实际应用的开关状态。

u∗(k)=arg⁡min⁡u∈SJ(u)

  1. 滚动优化:在下一个控制周期,重新采样系统状态,重复上述预测、评估和优化的过程。

三、FCS-MPCC 的优势

与传统的控制方法相比,FCS-MPCC 在三相PWM整流器控制中展现出显著的优势:

  1. 快速的动态响应:

    FCS-MPCC 直接根据预测误差选择最优的开关状态,无需经过PI控制器等环节的调节,因此能够实现非常快速的电流跟踪响应。当系统发生瞬态变化时,MPCC可以迅速调整开关状态,有效地抑制电流波动。

  2. 直观地处理系统约束:

    FCS-MPCC 可以在成本函数或可行域中直接考虑系统约束,例如电流限幅、电压限幅等。这使得控制器能够在满足约束条件的前提下优化控制性能,提高了系统的安全性和可靠性。

  3. 无需调制器:

    FCS-MPCC 直接输出开关状态,无需额外的脉冲宽度调制器(PWM调制),简化了控制结构,降低了实现难度。

  4. 良好的鲁棒性:

    虽然FCS-MPCC依赖于系统模型,但由于其预测时间步长通常较短(一个或几个采样周期),对模型参数的微小偏差具有一定的鲁棒性。同时,通过在成本函数中引入权重因子,可以平衡不同控制目标的优先级,提高控制器的鲁棒性。

  5. 易于扩展多目标控制:

    FCS-MPCC 的成本函数可以方便地纳入多个控制目标,如电流跟踪、直流侧电压稳定、开关频率最小化、谐波抑制等,通过调整不同项的权重,实现多目标优化控制。

四、FCS-MPCC 的挑战与改进方向

尽管FCS-MPCC具有诸多优势,但在实际应用中仍然面临一些挑战:

  1. 开关频率不固定:

    FCS-MPCC 在每一个控制周期都根据最优准则选择开关状态,这可能导致开关频率在不同工作点和运行状态下发生变化,甚至出现较低的平均开关频率,不利于滤波器的设计和损耗的评估。

  2. 存在电流纹波:

    由于FCS-MPCC 在一个控制周期内只应用一个开关状态,且预测模型存在误差,可能导致电流波形中存在一定的纹波,尤其是在低采样频率下。

  3. 计算量相对较大:

    虽然对于三相PWM整流器,可能的开关状态有限,但随着预测时间步长的增加或系统复杂度的提高,需要遍历和评估的开关状态数量会急剧增加,对实时计算能力提出了较高的要求。

  4. 对模型参数和电网电压的敏感性:

    虽然具有一定的鲁棒性,但FCS-MPCC的控制性能仍然受到模型参数误差和电网电压测量误差的影响。

针对上述挑战,研究者们提出了多种改进方案:

  1. 定频改进方法:

    为了解决开关频率不固定的问题,一些改进方法被提出,例如通过虚拟电压矢量、电压矢量排序或预测电压矢量控制等技术,将连续控制的思想引入到FCS-MPCC中,实现相对固定的开关频率。

  2. 减小电流纹波:

    提高采样频率是减小电流纹波的有效方法,但这会增加计算负担。其他方法包括采用更精确的预测模型,或者在成本函数中加入对电流纹波的惩罚项。

  3. 降低计算量:

    通过优化预测模型、采用剪枝算法或启发式搜索等方法,可以减少需要评估的开关状态数量,从而降低计算量。

  4. 提高鲁棒性:

    采用参数辨识技术在线修正模型参数,或者使用基于扰动观测器的MPCC,可以提高控制器对参数变化和扰动的鲁棒性。同时,利用扩展状态观测器估计电网电压,可以提高对电网电压波动的适应能力。

  5. 考虑多步预测:

    尽管单步预测是FCS-MPCC的常用形式,但通过考虑多个预测时间步长的控制,可以获得更优的长期控制性能,但计算量也会随之增加。

五、研究现状与未来展望

当前,FCS-MPCC 在三相PWM整流器的研究和应用中取得了显著进展。许多研究集中在如何提高控制性能、降低计算复杂度、增强鲁棒性以及实现更广泛的应用。例如,结合人工智能技术(如神经网络、模糊逻辑)来优化成本函数设计或改进预测模型,以及将FCS-MPCC应用于更高功率等级或更复杂拓扑结构的整流器中。

未来,FCS-MPCC 在三相PWM整流器领域的研究将可能聚焦以下几个方向:

  1. 与数据驱动方法的结合:

    探索将数据驱动技术与FCS-MPCC 相结合,利用大量的运行数据来改进预测模型或优化控制策略,以应对复杂的电网环境和负载变化。

  2. 基于模型的无传感器控制:

    研究基于模型的观测器,实现无需物理传感器对电流或电压进行测量,从而降低成本和提高系统可靠性。

  3. 与宽禁带半导体器件的协同优化:

    随着SiC、GaN等宽禁带半导体器件的普及,PWM整流器的开关频率将进一步提高。研究如何优化FCS-MPCC以充分发挥这些器件的优势,同时考虑高频开关带来的挑战。

  4. 多系统集成控制:

    将FCS-MPCC应用于包含多个功率变换器的复杂系统中,例如光伏并网系统、储能系统等,实现能量的高效管理和协调控制。

  5. 网络化控制与边缘计算:

    研究在分布式控制系统或微电网中应用FCS-MPCC,考虑通信延迟和带宽限制对控制性能的影响,并探索利用边缘计算能力实现实时的模型预测控制。

结论

三相PWM整流器有限集模型预测电流控制作为一种先进的控制策略,凭借其快速的动态响应、处理约束的能力和无需调制器的特点,在电力电子领域展现出巨大的潜力。尽管存在开关频率不固定、计算量等挑战,但随着研究的深入和技术的进步,这些问题正逐步得到解决。未来,FCS-MPCC有望在更广泛的应用领域发挥重要作用,并与其他先进技术相结合,推动电力电子变换技术迈向新的高度。对FCS-MPCC 的深入研究和实践,对于提高电力系统的运行效率、稳定性和可靠性具有重要的理论和工程意义。

⛳️ 运行结果

🔗 参考文献

[1] 冯海博,杨兴武,刘海波,等.基于多变量校正的MMC快速有限集模型预测控制策略[J].电力系统保护与控制, 2023, 51(23):26-36.

[2] 高林,张凯,张磊,等.三相电压型逆变器模型预测电流控制[J].采矿技术, 2012(6):4.DOI:CNKI:SUN:SJCK.0.2012-06-027.

[3] 王贵峰,高煦杰,武泽文,等.一种基于无差拍外环控制的串联型APF有限集模型预测控制策略研究[J].电网与清洁能源, 2022, 38(12):15-23.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值