✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
随着全球对清洁能源需求的激增,风力发电凭借其可再生、无污染等优势,在能源领域的占比持续攀升。风电场的高效稳定运行对电力系统的可靠供电至关重要,而精准的风电功率预测则是实现这一目标的核心环节。由于风能具有显著的随机性、间歇性与波动性,传统的点预测方法难以全面刻画风电功率的不确定性,无法为电力系统调度与运行提供足够信息。区间预测能够给出风电功率在一定置信水平下的波动范围,为电力系统规划、调度和风险管理提供更具参考价值的信息,从而有效提升系统应对风电不确定性的能力 。
近年来,深度学习技术在时间序列预测领域取得了重大突破,为风电场区间预测提供了新的解决方案。分位数回归(Quantile Regression,QR)作为一种能有效处理数据不确定性的统计方法,与深度学习模型相结合,形成了一系列分位数回归神经网络,如 QR - BiGRU、QR - BiTCN、QR - CNNBiGRU 等。这些模型通过学习不同分位数下的风电功率变化规律,生成具有不同置信水平的预测区间,在风电场区间预测中展现出巨大潜力。本文深入研究多种分位数回归神经网络在风电场区间预测中的性能,旨在为风电场功率预测提供更优的技术方案。
二、分位数回归理论基础
2.1 分位数回归原理
分位数回归由 Koenker 和 Bassett 于 1978 年提出,相较于传统的均值回归,它能更全面地描述因变量的条件分布特征。对于给定的因变量 Y 和自变量 X,τ 分位数回归模型可表示为:
三、基于深度学习的分位数回归模型
3.1 QR - BiGRU 模型
双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)是一种改进的循环神经网络结构,它能同时从正向和反向学习时间序列数据中的信息,有效捕捉长短期依赖关系 。QR - BiGRU 模型将分位数回归与 BiGRU 相结合,其网络结构通常包含输入层、BiGRU 层、全连接层和输出层。输入层接收历史风电功率数据、风速、风向等相关特征作为输入;BiGRU 层对输入数据进行特征提取,挖掘时间序列中的前后文信息;全连接层对 BiGRU 层输出的特征进行整合;输出层通过分位数回归损失函数,输出不同分位数下的风电功率预测值 。
3.2 QR - BiTCN 模型
双向时间卷积网络(Bidirectional Temporal Convolutional Network,BiTCN)是基于卷积神经网络(CNN)发展而来,用于处理时间序列数据 。它利用因果卷积和扩张卷积,在不增加参数数量的前提下,增大感受野,更好地捕捉时间序列中的长期依赖关系 。QR - BiTCN 模型中,输入数据经 BiTCN 层进行卷积操作,提取时间序列特征,再通过分位数回归输出预测区间。BiTCN 的双向结构使其能同时利用过去和未来的信息进行预测,在风电功率区间预测中展现出良好性能 。
3.3 QR - CNNBiGRU 和 QR - CNNBiGRUAttention 模型
QR - CNNBiGRU 模型结合了卷积神经网络和双向门控循环单元的优势。CNN 层先对输入数据进行局部特征提取,捕捉数据中的短期模式;BiGRU 层进一步学习时间序列的长短期依赖关系,综合 CNN 提取的局部特征和 BiGRU 学习的序列特征,通过分位数回归输出预测区间 。
QR - CNNBiGRUAttention 模型在 QR - CNNBiGRU 基础上引入注意力机制(Attention Mechanism)。注意力机制能使模型在处理序列数据时,自动关注不同时间步上更重要的信息,增强关键信息对预测结果的影响,抑制无关信息干扰 。在该模型中,注意力机制模块根据输入数据的特征,计算每个时间步的注意力权重,对 BiGRU 层输出的特征进行加权,突出重要特征,从而提高模型的预测精度和对复杂数据的适应性 。
3.4 QR - CNNLSTM、QR - GRU 和 QR - LSTM 模型
QR - CNNLSTM 模型将 CNN 的局部特征提取能力与长短期记忆网络(Long Short - Term Memory,LSTM)处理长序列依赖的能力相结合。LSTM 通过输入门、遗忘门和输出门控制信息的流入、流出和记忆,有效解决传统循环神经网络的梯度消失和梯度爆炸问题 。QR - CNNLSTM 模型先由 CNN 提取输入数据的局部特征,再经 LSTM 学习时间序列中的长期依赖,最后通过分位数回归实现区间预测 。
QR - GRU 和 QR - LSTM 模型则分别是分位数回归与门控循环单元(GRU)、长短期记忆网络的结合。GRU 是 LSTM 的简化版本,它将输入门和遗忘门合并为更新门,减少了模型参数,提高计算效率 。QR - GRU 和 QR - LSTM 模型通过各自的循环神经网络结构学习时间序列特征,利用分位数回归输出不同置信水平的风电功率预测区间 。
3.5 QR - TCN 模型
时间卷积网络(Temporal Convolutional Network,TCN)是一种专门用于处理时间序列数据的卷积神经网络,具有因果性、扩张性和并行性等特点 。QR - TCN 模型通过因果卷积和扩张卷积构建深层网络结构,能有效捕捉时间序列中的长距离依赖关系 。输入的风电相关数据经 TCN 层进行卷积运算,提取特征,然后通过分位数回归输出风电功率预测区间。由于 TCN 的并行计算特性,该模型在处理大规模时间序列数据时具有较高的计算效率 。
四、模型训练与实验设置
4.1 数据收集与预处理
收集某风电场的历史风电功率数据,以及对应的风速、风向、气温、气压等气象数据作为辅助变量。对收集到的数据进行预处理,包括数据清洗,去除异常值和缺失值;数据归一化,将所有数据映射到 [0, 1] 区间,以加速模型训练收敛 。将预处理后的数据按时间顺序划分为训练集、验证集和测试集,其中训练集用于模型参数学习,验证集用于调整模型超参数,测试集用于评估模型性能 。
4.2 模型训练过程
以 QR - BiGRU 模型为例,模型训练步骤如下:首先,初始化 BiGRU 层和全连接层的权重参数;将训练集数据输入模型,前向传播计算不同分位数下的预测值;根据分位数回归损失函数计算预测值与真实值之间的误差;通过反向传播算法更新模型参数,使损失函数值最小化 。在训练过程中,使用随机梯度下降(SGD)或其变种(如 Adagrad、Adadelta、Adam 等)作为优化器,调整学习率等超参数,以提高模型训练效果 。其他分位数回归神经网络模型的训练过程类似,根据各自的网络结构特点进行参数更新和优化 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇