✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
随着全球对清洁能源需求的持续增长,光伏发电凭借其绿色环保、可再生等优势,在能源结构中所占比重不断攀升。然而,受光照强度、环境温度、天气状况等多种因素影响,光伏功率输出具有显著的间歇性和波动性,这给电力系统的稳定运行和调度带来了巨大挑战。准确的光伏功率预测能够有效提升电力系统对光伏发电的消纳能力,优化调度决策,降低运行成本 。传统的预测方法在处理多变量输入和超前多步预测任务时,往往难以充分挖掘数据特征和时间序列的长期依赖关系。卷积神经网络(CNN)在特征提取方面表现出色,双向长短期记忆网络(BiLSTM)擅长处理时间序列数据,二者结合为光伏功率预测提供了新的思路。本文基于 CNN-BiLSTM 模型,开展多变量输入超前多步光伏功率预测研究,旨在提高光伏功率预测的准确性和可靠性。
二、CNN 与 BiLSTM 算法原理
2.1 卷积神经网络(CNN)原理
CNN 是一种受生物视觉机制启发的深度学习模型,在图像、语音等领域取得了卓越成就,其核心组件包括卷积层、池化层和全连接层 。卷积层通过卷积核在输入数据上滑动,进行卷积运算,提取数据的局部特征,并且通过权值共享减少模型参数数量,降低计算复杂度;池化层对卷积层输出的数据进行下采样操作,在保留主要特征的同时,降低数据维度,减少过拟合风险;全连接层将池化层输出的特征进行整合,输出最终的预测结果。在处理时间序列数据时,CNN 能够有效提取数据的局部模式和特征,适用于挖掘多变量输入数据中的隐含信息 。
2.2 双向长短期记忆网络(BiLSTM)原理
LSTM 是一种特殊的循环神经网络(RNN),通过引入门控机制(输入门、遗忘门和输出门),有效解决了传统 RNN 在处理长序列数据时存在的梯度消失和梯度爆炸问题,能够更好地捕捉时间序列的长期依赖关系 。BiLSTM 由两个方向相反的 LSTM 组成,一个从序列的起始端向末端传递信息,另一个从末端向起始端传递信息,使得模型能够同时利用过去和未来的信息进行预测 。在光伏功率预测中,BiLSTM 能够充分学习历史功率数据以及相关影响因素的时间序列特征,提高预测精度 。
三、基于 CNN-BiLSTM 的光伏功率预测模型构建
3.1 多变量数据选取与预处理
影响光伏功率输出的因素众多,本研究选取光照强度、环境温度、相对湿度、风速以及历史光伏功率数据作为输入变量。在数据预处理阶段,首先对原始数据进行清洗,去除异常值和缺失值;然后采用归一化方法,将数据映射到 [0, 1] 或 [-1, 1] 区间,使不同变量的数据具有相同的尺度,加快模型训练的收敛速度 。同时,将处理后的数据划分为训练集、验证集和测试集,其中训练集用于模型参数的学习,验证集用于调整模型超参数,测试集用于评估模型的泛化能力 。
3.2 CNN-BiLSTM 模型结构设计
构建的 CNN-BiLSTM 模型由 CNN 层、BiLSTM 层和全连接层组成。输入层接收经过预处理的多变量时间序列数据;CNN 层采用多个不同大小的卷积核进行卷积操作,提取数据的局部特征,并通过池化层对卷积结果进行降维;BiLSTM 层接收 CNN 层输出的特征,进一步学习时间序列的长短期依赖关系;最后,全连接层将 BiLSTM 层输出的特征进行整合,通过激活函数输出超前多步的光伏功率预测值 。在模型训练过程中,采用均方误差(MSE)作为损失函数,利用随机梯度下降(SGD)或其改进算法(如 Adam)对模型参数进行优化,以最小化预测值与实际值之间的误差 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇