基于PD控制器的四旋翼无人机研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

四旋翼无人机(UAV)作为一种垂直起降、结构紧凑、操作灵活的飞行平台,在军事、民用等领域展现出巨大的应用潜力。其飞行的稳定性和控制精度是实现各种任务的关键。本文深入研究了基于比例-微分(PD)控制器的四旋翼无人机控制系统。首先,对四旋翼无人机的动力学模型进行了详细推导,包括旋转矩阵、欧拉角以及力和力矩的建立。其次,设计了级联PD控制器,针对位置环和姿态环分别进行控制,详细阐述了PD控制器参数选择的依据。接着,通过仿真实验验证了PD控制器在四旋翼无人机姿态保持、轨迹跟踪等方面的有效性,并对控制器的性能进行了评估。最后,对研究中存在的问题和未来发展方向进行了探讨。研究结果表明,PD控制器能够有效实现四旋翼无人机的稳定飞行控制,为后续更复杂的控制算法研究奠定了基础。

关键词

四旋翼无人机;PD控制器;动力学模型;姿态控制;轨迹跟踪

1 引言

近年来,无人机技术发展迅猛,尤其以四旋翼无人机为代表的多旋翼飞行器,以其独特的优势,如垂直起降、空中悬停、结构简单、成本相对较低等,在空中摄影、物流运输、环境监测、农业植保、灾情侦察以及军事侦察等诸多领域得到广泛应用 [1-3]。然而,四旋翼无人机作为一种欠驱动、强耦合、非线性的复杂系统,其飞行稳定性及控制精度一直都是研究的热点和难点 [4]。

为了实现四旋翼无人机的稳定飞行和精确控制,各种控制算法被提出并应用。其中,比例-积分-微分(PID)控制器因其结构简单、易于实现、鲁棒性好等特点,在工业控制领域得到了广泛应用,也成为了四旋翼无人机控制领域的主流算法之一 [5]。PD控制器作为PID控制器的一种简化形式,在控制实时性要求较高且积分饱和问题不突出的场景下,能够表现出良好的控制性能。

本文旨在深入研究基于PD控制器的四旋翼无人机控制系统。我们将从四旋翼无人机的动力学模型建立入手,详细阐述其运动特性。在此基础上,设计并实现级联PD控制器,用于解耦控制四旋翼无人机的位置和姿态。最后,通过仿真实验验证PD控制器的有效性,并对控制器的性能进行分析。

2 四旋翼无人机动力学模型

四旋翼无人机通常由四个独立的旋翼组成,通过改变不同旋翼的转速来产生升力以及控制飞行姿态。为了对其进行有效控制,首先需要建立精确的动力学模型。

2.1 坐标系定义

为了描述四旋翼无人机的运动,通常定义两个重要的坐标系:

图片

图片

图片

图片

图片

2.4 力矩的产生

四旋翼无人机通过改变不同旋翼的转速来产生滚动、俯仰和偏航力矩。

  1. 滚动力矩:通过改变左右两对旋翼(例如1号和3号旋翼与2号和4号旋翼)的转速差产生。例如,增加2号和4号旋翼转速,减少1号和3号旋翼转速,会产生向右滚动的力矩。

  2. 俯仰力矩:通过改变前后两对旋翼(例如1号和2号旋翼与3号和4号旋翼)的转速差产生。例如,增加1号和2号旋翼转速,减少3号和4号旋翼转速,会产生向前俯仰的力矩。

  3. 偏航力矩:通过改变对角线上旋翼的转速差产生。通常,对角线上的旋翼旋转方向相反。通过改变具有相同旋转方向的旋翼的转速差,可以产生偏航力矩。例如,增加1号和3号旋翼转速,同时减少2号和4号旋翼转速,会产生一个偏航力矩。

图片

图片

3 PD控制器设计

PD控制器是一种线性控制器,通过结合比例项(P)和微分项(D)来控制系统。比例项根据当前误差大小产生控制作用,微分项根据误差变化率预测未来误差趋势,从而提供阻尼作用,减少超调和震荡。

对于四旋翼无人机这种多输入多输出(MIMO)系统,通常采用级联PD控制器的结构,将位置控制和姿态控制分开进行,并利用内环(姿态环)的快速响应能力来稳定外环(位置环)。

3.1 级联PD控制结构

级联PD控制器将控制任务分解为两个主要部分:

图片

图片

图片

图片

图片

图片

图片

4 结论与展望

本文对基于PD控制器的四旋翼无人机控制系统进行了深入研究。首先,详细推导了四旋翼无人机的动力学模型,为控制器设计提供了坚实的理论基础。其次,设计了级联PD控制器,分别实现了对位置和姿态的有效控制。最后,通过仿真实验验证了PD控制器在四旋翼无人机悬停和轨迹跟踪方面的良好性能。研究结果表明,PD控制器能够有效实现四旋翼无人机的稳定飞行控制,响应速度快,稳定性好,且易于实现。

然而,为了进一步提高四旋翼无人机的控制性能,未来的研究可以从以下几个方面展开:

  1. 引入积分项

    :将PD控制器扩展为PID控制器,以消除稳态误差,提高控制精度。

  2. 自适应/鲁棒控制

    :针对无人机模型不确定性、外部扰动等问题,研究自适应控制、鲁棒控制或滑模控制等更先进的控制算法,以提高系统的鲁棒性和抗干扰能力。

  3. 智能控制

    :结合模糊逻辑、神经网络等智能控制技术,实现控制器参数的在线自整定,进一步优化控制性能。

  4. 硬件在环仿真与实际飞行验证

    :将仿真结果应用到实际硬件平台进行验证,并不断优化控制器参数,以应对真实环境中的复杂挑战。

  5. 多机协同控制

    :研究多架四旋翼无人机之间的协同控制算法,以完成更复杂的集群任务。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 许喆.基于SMC的四旋翼无人机抗风扰研究[J].电光与控制, 2017, 24(1):5.DOI:10.3969/j.issn.1671-637X.2017.01.016.

[2] 曾伟.基于DSP的四旋翼无人机驱动器的控制研究[D].天津大学,2012.DOI:10.7666/d.Y2243158.

[3] 高青.四旋翼无人机的建模及线性二次伺服控制研究[D].新疆大学,2014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值