无人机路径规划及轨迹规划笔记

目录

一、构形空间

二、图的定义

三、图搜索算法

1、概述

2、广度优先算法(BFS)和深度优先算法(DFS)

1、广度优先算法(BFS)

2、深度优先算法(DFS)

3、对比

3、贪婪最佳优先算法

4、Dijkstar算法和A*算法

1、Dijkstar算法

2、A*算法(Dijkstar+启发式函数)

3、区别


学习视频链接:6.无人机路径规划及轨迹规划_哔哩哔哩_bilibili

一、构形空间

·机器人构形:机器人所有的位置点
·机器人自由度(DOF):用来表示机器人构形的最小实数坐标数
·机器人构形空间:包含所有可能的机器人构形的n维空间,记作C-space
·每个机器人姿态都是C-Space中的一个点

二、图的定义

图由节点和边构成

三、图搜索算法

1、概述

维护一个容器来存储所有待访问的节点,容器初始化时只存在初始状态Xs,按一定的循环顺序从容器中移出一个节点,得到该节点的所有邻接点,并将这些节点存入容器。当容器为空时结束循环,禁止从容器中移出的节点再次进入容器。

2、广度优先算法(BFS)和深度优先算法(DFS)

1、广度优先算法(BFS)

先进入队列的节点会被先拿出来

2、深度优先算法(DFS)

后进入队列的节点会被先拿出来

3、对比

3、贪婪最佳优先算法

通过启发式函数取出节点(欧式距离&曼哈顿距离)

欧式距离:两点之间的直线距离

曼哈顿距离:在二维平面中,两个点 (x1, y1) 和 (x2, y2) 之间的曼哈顿距离计算公式为 |x1 - x2| + |y1 - y2| 。在三维空间中,如果有两点 a(x1, y1, z1) 和 b(x2, y2, z2),则它们之间的曼哈顿距离是 |x1 - x2| + |y1 - y2| + |z1 - z2|

优点:没有障碍物时可以很快的规划路径

缺点:存在障碍物时,规划出来的路径不是最短路径

4、Dijkstar算法和A*算法

1、Dijkstar算法

策略:每次从容器中取出累计代价g(n)最小的节点。已扩展节点的累计代价应为到起始点的最短路径代价。

g(n):从初始点到点n的累计代价

算法流程:

优点:具有完备性和最优性

缺点:扩展不具有方向性,没有利用到目标点的信息

2、A*算法(Dijkstar+启发式函数)

策略:取出具有最小f(n)的节点

累计代价 g(n):从起始状态到节点“n”的最小估计代价 

启发式函数h(n):从节点到目标点的最小估计代价

从起始状态到目标状态,经过节点“n”的最小估计代价为 f(n)=g(n)+h(n)

算法流程:

可采用的启发函数:所有节点到终点的代价小于等于从节点n到终点的真实最小距离

加权A*算法:

{f}={a\cdot g+b\cdot h}

3、区别

Dijkstar算法:朝着各个方向搜索

A*算法:朝着目标点方向搜索

 


未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值