💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
这是一个基于 Pytorch 实现的轴承故障诊断方法,它通过采集轴承振动信号,并将信号经过小波变换得到时频图,然后使用 SwinTransformer 对时频图进行处理以实现故障诊断。
SwinTransformer 是一个轻量级的 Transformer 模型,目前在计算机视觉领域得到了广泛的应用。它采用了防止显存泄漏的窗口交换机制,兼顾了局部信息和全局信息,具有较好的性能和较低的计算消耗。
在轴承故障诊断中,使用小波变换得到轴承振动信号的时频图,然后将时频图作为 SwinTransformer 的输入进行训练和预测。该方法可以实现对不同类型的轴承故障进行诊断,具有较高的准确率和稳定性。
Swintransformer是一种由Microsoft在2021年提出的方法,它是一种高效的图像分类模型,具有出色的性能和可扩展性。该模型使用了一种全新的Swin结构,它采用了分层的注意力机制和局部注意力机制,以实现高效的信息交互和全局视野。这种方法已经在图像分类、目标检测和语音识别等领域得到了广泛的应用。
本文将Swintransformer与小波时频图结合起来,共同用于轴承故障诊断中,是一种全新的创新方法。小波时频图是一种将时间和频率信息结合起来的图像表示方法,它可以有效地捕捉信号的时频特征,从而提高故障诊断的准确性和可靠性。通过将Swintransformer和小波时频图相结合,我们可以充分利用它们各自的优势,实现更加精确和高效的轴承故障诊断。
这种新的方法具有许多优点。首先,它可以有效地捕捉信号的时频特征,从而提高故障诊断的准确性和可靠性。其次,它可以快速地处理大量的数据,从而提高诊断的效率和速度。最后,它可以适应不同类型的轴承故障,并能够自动学习和优化模型,从而实现更加智能和自适应的故障诊断。
Swintransformer与小波时频图相结合,是一种非常新颖和创新的方法,可以为轴承故障诊断带来更加准确、可靠、高效和智能的解决方案。我们相信,这种方法将会在未来得到广泛的应用和推广,为工业制造和机械维修等领域带来更加可靠和高效的故障诊断技术。
需要注意的是,该方法需要大量的轴承振动信号数据集作为支撑,否则模型的效果可能会大打折扣。此外,训练和调参也是非常重要的,需要科学地选择合适的损失函数、学习率、训练批次等参数才能得到较好的结果。
📚2 运行结果
全部结果:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]杜康宁,宁少慧.基于和的滚动轴承故障诊断研究[J].机床与液压, 2023, 51(15):209-215.
[2]黄驰城.结合时频分析和卷积神经网络的滚动轴承故障诊断优化方法研究[D].浙江大学[2023-11-10].