💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一种考虑拥塞的潜在基于函数的采样启发式最优路径规划算法,旨在在导航过程中综合考虑交通状况,通过有效的函数采样和启发式方法寻找最佳路径。该算法不仅关注路径长度和时间,还在考虑交通拥塞情况下进行智能决策,以提高路径规划的效率和实用性。通过结合基于函数的采样和拥塞感知,这一算法在实际应用中具有潜在的优势,特别是在城市交通等复杂环境中的路径规划问题上。
📚2 运行结果
部分代码:
%% 声明变量
clc;
clear;
close all;
%% 构建颜色MAP图
cmap = [1 1 1; ... % 1-白色-空地
0 0 0; ... % 2-黑色-静态障碍
1 0 0; ... % 3-红色-动态障碍
1 1 0;... % 4-黄色-起始点
1 0 1;... % 5-品红-目标点
0 1 0; ... % 6-绿色-到目标点的规划路径
0 1 1]; % 7-青色-动态规划的路径
% 构建颜色MAP图
colormap(cmap);
myColor=[16 , 232, 7 ;
242, 213, 7 ;
219, 96 , 4 ;
242, 7 , 124;
108, 75 , 235;
0 , 1 , 1 ;
1 , 0 , 0 ;];
for i=1:size(myColor)
myColor(i,:)=myColor(i,:)/norm(myColor(i,:));
end
%% 构建栅格地图场景
% 栅格界面大小:行数和列数
rows = 10;
cols = 10;
% % 定义栅格地图全域,并初始化空白区域
% field = ones(rows, cols);
%
% % 障碍物区域
% obsRate = 0.3;
% obsNum = floor(rows*cols*obsRate);
% obsIndex = randi([1,rows*cols],1,obsNum);
% field(obsIndex) = 2;
%
% start=[1,1];%起点
% goal=[10,10];%终点
% field(start(1),start(2)) = 1;
% field(goal(1),goal(2)) = 1;
% field;
% [oby,obx]=find(field==2);
% obr=ones(size(obx));
% obstacle=[obx,oby,obr];
% start=[1.5,1.5];%起点
% goal=[10.5,10.5];%终点
start=[1,1];%起点
goal=[11,11];%终点
area=[1,rows+1,1,cols+1];%范围
plotArea=area;%范围
tree=[];%树
prob=0.1;%搜索概率
stepSize=0.5;%步长
DISCRETE=0.05;%检测障碍的离散步长
% obstacleNum=10;%障碍数量
% obstaclePoint=randi(8,obstacleNum,2)+2;%障碍坐标
% obstacleR=randi(10,obstacleNum,1)./10;%障碍大小
% obstacle=[obstaclePoint obstacleR];%障碍
obstacle=[3,3,1.3;3,7,1.3;8,9,1.5;7.7,3,1.6;];%障碍
% obstacle=[5,2,3;7,10,3;];%障碍
nearByR=5;%newNode搜索范围
iter=0;%迭代次数
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Fahimeh B ,Jafar R ,Mahdi J . Optimal path planning of spacecraft fleet to asteroid detumbling utilizing deep neural networks and genetic algorithm[J]. Advances in Space Research,2023,72(8).
[2]曹景祥. 基于深度强化学习的路径规划算法研究[D].烟台大学,2023.DOI:10.27437/d.cnki.gytdu.2023.000197
[3]张瑞. 复杂环境下移动机器人路径规划算法研究[D].南京信息工程大学,2023.DOI:10.27248/d.cnki.gnjqc.2023.001661.