✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️

在现代科学和工程领域,数据可视化是一种强大的工具,用于帮助我们理解和解释复杂的数据集。随着技术的进步,我们现在能够以更直观、更生动的方式呈现数据,从而更好地理解其内在的模式和趋势。在本文中,我们将介绍一种免费的方法,可以以3D形式显示热图、高程或天线响应模式表面数据,从而提供更丰富的数据可视化体验。

  1. 背景

热图、高程和天线响应模式表面数据是一类常见的数据类型,用于描述空间上的数据分布。热图可以显示不同位置上的温度或强度变化,高程可以表示地形或海洋深度的变化,而天线响应模式表面数据则用于描述天线在不同方向上的响应能力。这些数据通常以二维表格或图形的形式呈现,但这种方式往往无法完全展现数据的复杂性和空间分布。

  1. 3D 数据可视化的优势

3D 数据可视化是一种更高级的数据呈现方式,可以在三维空间中展现数据的内在结构和关系。与传统的二维图表相比,3D 数据可视化具有以下几个优势:

a. 更直观:通过将数据映射到三维空间中,我们可以更直观地理解数据的分布和变化趋势。

b. 更生动:3D 数据可视化可以为数据增添更多的维度,使其更生动有趣,更容易吸引观众的注意。

c. 更全面:通过将数据在三维空间中展示,我们可以更全面地了解数据的特征和关联性。

幸运的是,现在有许多免费的工具可以帮助我们以3D形式显示热图、高程或天线响应模式表面数据。以下是一些常用的工具:

a. Matplotlib:Matplotlib 是一个功能强大的 Python 数据可视化库,可以用于创建各种类型的图形,包括3D图形。它提供了丰富的函数和方法,可以用于创建热图、高程图和表面图等。

b. Plotly:Plotly 是一个交互式的数据可视化库,支持多种编程语言,包括 Python、R 和 JavaScript。它提供了许多3D图形的创建和定制选项,可以轻松地创建热图、高程图和表面图。

c. ParaView:ParaView 是一个开源的数据分析和可视化工具,主要用于处理大规模科学数据。它支持多种数据类型的可视化,包括热图、高程图.

3D 数据可视化是一种强大的工具,可以帮助我们更好地理解和解释热图、高程或天线响应模式表面数据。通过使用免费的工具,如Matplotlib、Plotly和ParaView,我们可以轻松地以3D形式展示这些数据,并从中获取更丰富的信息。无论是在科学研究、工程设计还是数据分析领域,3D 数据可视化都将成为我们的得力助手,帮助我们更好地理解和利用数据。让我们充分利用这些工具,开启数据可视化的新篇章!

🔥核心代码

function spheresurf(data,scale)
%SPHERESURF Display a matrix of surface data overlaid on a sphere.
%   SPHERESURF(DATA,SCALE) displays the heatmap, elevation, or antenna 
%   response pattern surface DATA, wrapped onto the surface of a sphere,
%   with height SCALE relative to the sphere's radius.  The input DATA is
%   typically a matrix of values expressed over a Cartesian grid of 
%   latitude and longitude angles.  SCALE must be a positive number or 
%   zero.  For SCALE = 0, the data is shown as a flat heatmap on the 
%   surface of the sphere.
%
%   SPHERESURF(DATA) displays the data with relative magnitude SCALE = 1.
%
%   Example 1: Display the 3-D response pattern generated by a 6-element 
%   uniform rectangular array.
%
%       load('arrayresponse.mat')
%       hf = figure('Visible','off','Position',[400 260 1250 430]);
%       axes('Units','pixels','Position',[50 60 350 350])
%       spheresurf(r,0)
%       title('Scale = 0')
%       axes('Units','pixels','Position',[450 60 350 350])
%       spheresurf(r,0.3)
%       title('Scale = 0.3')
%       axes('Units','pixels','Position',[850 60 350 350])
%       spheresurf(r,inf)
%       title('Scale = inf')
%       movegui(hf,'center')
%       set(hf,'Visible','on')
%
%   Example 2: Display the surface of the Earth with exaggerated elevation
%   values.
% 
%       load('topo.mat','topo','topomap1')
%       figure
%       spheresurf(topo,0.1)
%       colormap(topomap1)

% Paul Fricker 11 May 2012 The MathWorks, Inc.

% Input checking
if nargin == 0
    error('')
elseif nargin == 1
    scale = 1;
elseif nargin > 2
    error('respsurf:nArgs','Incorrect number of input arguments')
end

if ~isnumeric(data)
    error('respsurf:isDataNumeric','The first input (data) must be a numeric array.')
end
if ~isreal(data)
    error('respsurf:isDataReal','The input data must be real.')
end
if ~ismatrix(data)
    error('respsurf:isDataMatrix','The first input (data) must be a matrix.')
end
if any(size(data)==1)
    error('respsurf:isDataVector','The first input (data) must be a matrix.')
end

if ~isnumeric(scale)
    error('respsurf:isScaleNumeric','The second input (scale factor) must be numeric.')
end
if ~isreal(scale)
    error('respsurf:isScaleReal','Scale factor must be a real number.')
end
if scale < 0
    error('respsurf:isScalePositive','Scale factor must be a positive number (or zero).')
end

% Create a unit sphere
[x,y,z] = sphere(size(data));

% Scale the data and merge it with the sphere
if ~isinf(scale)
    r = (1 + scale*data/max(abs(data(:))))/(1 + scale);
else
    r = data/max(abs(data(:)));
end
xmod = r.*x;
ymod = r.*y;
zmod = r.*z;

if any(r(:) <= -1/(1+scale))
    warning('respsurf:negativeWarning', ...
            ['The provided input DATA and SCALE factor produce negative ' ...
             'values which are visible through the back of the sphere.'])
end

% Create the surface plot
ha = newplot;
surf(xmod,ymod,zmod,data,'Parent',ha), shading interp
set(ha,'XTickLabel','','YTickLabel','','ZTickLabel','', ...
       'XLim',[-1 1],'YLim',[-1 1],'ZLim',[-1 1], ...
       'TickLength',[0 0])
axis square
colorbar


function [x,y,z] = sphere(nm)
%SPHERE Create a unit sphere.
%   [X,Y,Z] = SPHERE(NM) creates an N-by-M set of (X,Y,Z)-values on the
%   unit sphere.

n = nm(1);
m = nm(2);

% Build vectors of angles
theta = (-(m-1):2:(m-1))/(m-1)*pi;
phi   = (-(n-1):2:(n-1))'/(n-1)*pi/2;

% Compute (X,Y,Z)-coordinate locations
sintheta = sin(theta); sintheta([1 m]) = 0;
cosphi   = cos(phi);   cosphi([1 n])   = 0;
x = cosphi*cos(theta);
y = cosphi*sintheta;
z = sin(phi)*ones(1,m);

❤️

【免费】以 3D 形式显示热图、高程或天线响应模式表面数据附matlab代码_数据

⛄ 参考文献

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计