✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在当今信息时代,数据分析和预测已成为各行各业的重要工具。在气象学领域,温度预测对于农业、能源和交通等方面具有重要意义。为了提高温度预测的准确性,研究人员一直在寻找更加有效的预测模型和算法。本文将介绍一种基于麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络实现温度预测的方法,即SSA-CNN-LSTM-Multihead-Attention。
首先,让我们来了解一下SSA-CNN-LSTM-Multihead-Attention的各个组成部分。SSA代表单变量奇异谱分析(Singular Spectrum Analysis),它是一种常用于时间序列分析的技术,能够将时间序列数据分解成多个成分。CNN代表卷积神经网络(Convolutional Neural Network),它能够有效地捕捉时间序列数据中的局部特征。LSTM代表长短记忆神经网络(Long Short-Term Memory),它能够捕捉时间序列数据中的长期依赖关系。Multihead-Attention代表多头注意力机制,它能够将时间序列数据中的不同部分进行加权组合,从而更好地捕捉时间序列数据的重要信息。
在SSA-CNN-LSTM-Multihead-Attention模型中,首先使用SSA对温度时间序列数据进行分解,然后将分解后的数据输入到CNN中进行特征提取,接着将提取的特征输入到LSTM中进行序列建模,最后使用多头注意力机制对LSTM的输出进行加权组合,得到最终的温度预测结果。
为了进一步优化SSA-CNN-LSTM-Multihead-Attention模型,本文引入了麻雀算法(Sparrow Search Algorithm),它是一种基于自然界麻雀觅食行为的启发式优化算法,能够有效地寻找到复杂问题的最优解。在本文中,麻雀算法被用于优化多头注意力机制的权重,从而使模型能够更好地捕捉时间序列数据中的重要信息,提高温度预测的准确性。
通过在真实的温度时间序列数据上进行实验,我们发现SSA-CNN-LSTM-Multihead-Attention模型在温度预测任务上取得了较好的性能,相比传统的预测模型,其预测准确性有了显著提高。这表明基于麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络的方法在温度预测领域具有较大的应用前景。
综上所述,本文介绍了一种基于麻雀算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络实现温度预测的方法,即SSA-CNN-LSTM-Multihead-Attention。该方法在温度预测任务上取得了较好的性能,为气象学领域的数据分析和预测提供了一种新的思路和方法。希望本文的研究能够对相关领域的研究人员和实践者有所启发,推动气象学领域的数据分析和预测工作取得更大的进展。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 田序伟,杨凯,殷彤,等.基于SSA-Bi-LSTM的港口环境空气质量指数预测[J].交通节能与环保, 2023(005):019.
[2] 张振坤,张冬梅,李江,等.基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J].岩土力学, 2022.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合