✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
肌电信号(EMG)是一种由肌肉收缩产生的生物电信号。它可以用来控制假肢、机器人和其他医疗设备。肌电信号识别是一项重要的技术,它可以将肌电信号转换为控制命令。
支持向量机(SVM)是一种强大的机器学习算法,它可以用于肌电信号识别。SVM通过在高维空间中找到一个超平面来对数据进行分类。超平面将数据点分为两类,一类是正例,另一类是负例。
在肌电信号识别中,SVM可以用来将肌电信号分为不同的类别,例如屈肌收缩、伸肌收缩和旋转收缩。SVM还可以用来识别不同的手势,例如握拳、张开手掌和挥手。
为了使用SVM进行肌电信号识别,需要先对肌电信号进行预处理。预处理包括滤波、归一化和特征提取。滤波可以去除肌电信号中的噪声。归一化可以将肌电信号的幅度调整到相同水平。特征提取可以提取肌电信号中与分类相关的特征。
预处理之后,就可以使用SVM对肌电信号进行分类。SVM的训练过程包括选择核函数、设置惩罚参数和训练模型。核函数将肌电信号映射到高维空间。惩罚参数控制模型的复杂度。训练模型的过程就是找到一个超平面,使得超平面将正例和负例正确分开。
训练好模型之后,就可以使用模型对新的肌电信号进行分类。分类过程包括将肌电信号映射到高维空间、计算肌电信号与超平面的距离,并根据距离将肌电信号分为不同的类别。
SVM是一种强大的机器学习算法,它可以用于肌电信号识别。SVM具有鲁棒性强、泛化能力好等优点。SVM在肌电信号识别领域得到了广泛的应用,取得了很好的效果。
📣 部分代码
function [w,b]=SVM_Train(class1,class2)
[~,class1_Num]=size(class1);%class1样本点的特征维数n,样本点数class1_Num
[~,class2_Num]=size(class2);
sampleNum=class1_Num+class2_Num;
train_set_data=[class1';class2'];
% [train_set_scale,~]=mapminmax(train_set',0,1);
% train_set_scale=train_set_scale';
train_set_labels=ones(sampleNum,1);
train_set_labels(1:class1_Num,:)=-1;
model=svmtrain(train_set_labels,train_set_data)%,'-s 2 -c 1 -g 0.07'
w=model.SVs'*model.sv_coef;
b=-model.rho;
⛳️ 运行结果
🔗 参考文献
[1] 郑鑫.基于表面肌电信号的手臂运动模式识别方法研究[D].吉林大学[2023-12-31].DOI:CNKI:CDMD:2.1012.368100.
[2] 黄赟伟.基于支持向量机的表面肌电信号模式识别方法研究[D].西安理工大学[2023-12-31].DOI:CNKI:CDMD:2.2010.141077.
[3] 黄赟伟.基于支持向量机的表面肌电信号模式识别方法研究[D].西安理工大学,2010.DOI:CNKI:CDMD:2.2010.141077.