✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
轴承故障诊断是工业领域的关键任务,对于确保机器的可靠性和安全运行至关重要。本文提出了一种基于堆栈降噪自编码(SDAE)的轴承故障诊断方法。SDAE 是一种深度学习模型,它可以有效地从原始信号中提取故障特征。通过堆叠多个 SDAE 层,该方法可以进一步提高特征提取能力。实验结果表明,该方法在轴承故障诊断任务上取得了出色的性能,优于传统方法。
引言
轴承是旋转机械中重要的组件,其故障会对机器的运行造成严重影响。因此,轴承故障诊断对于确保机器的可靠性和安全运行至关重要。近年来,基于深度学习的方法在轴承故障诊断领域得到了广泛的研究和应用。
自编码器(AE)是一种无监督学习模型,它可以学习原始数据中的潜在特征。降噪自编码器(DAE)是一种 AE 的变体,它可以从噪声数据中学习干净的表示。堆栈降噪自编码器(SDAE)是多个 DAE 层堆叠而成的模型,它可以进一步提高特征提取能力。
方法
本文提出的基于 SDAE 的轴承故障诊断方法主要包括以下步骤:
-
**数据预处理:**对原始振动信号进行预处理,包括归一化、去噪和分段。
-
**SDAE 模型构建:**构建一个 SDAE 模型,该模型由多个 DAE 层堆叠而成。每个 DAE 层包含一个编码器和一个解码器。编码器将原始信号映射到一个低维特征空间,而解码器将低维特征空间映射回原始信号。
-
**特征提取:**将预处理后的振动信号输入到 SDAE 模型中,提取故障特征。
-
**分类:**使用支持向量机(SVM)或其他分类器对提取的故障特征进行分类。
📣 部分代码
%% 初始化
clear
close all
clc
warning off
%% 数据读取
d
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=15; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
⛳️ 运行结果
实验
为了验证该方法的有效性,我们使用了一个公开的轴承故障数据集进行了实验。该数据集包含了正常轴承和四种不同类型的故障轴承的振动信号。
我们使用 10 折交叉验证的方法评估了该方法的性能。实验结果表明,该方法在轴承故障诊断任务上取得了出色的性能。与传统方法相比,该方法的准确率更高,鲁棒性也更好。
结论
本文提出了一种基于 SDAE 的轴承故障诊断方法。该方法通过堆叠多个 SDAE 层,有效地从原始信号中提取故障特征。实验结果表明,该方法在轴承故障诊断任务上取得了出色的性能,优于传统方法。该方法可以为工业领域的轴承故障诊断提供一种新的解决方案。
🔗 参考文献
[1] 韩辉,程德权,徐赫.基于堆叠降噪自编码的给水泵轴承故障诊断[J].机电工程技术, 2021.DOI:10.3969/j.issn.1009-9492.2021.04.070.
[2] 余娟,杨燕,杨知方,等.基于堆栈降噪自动编码器的电力系统概率潮流计算方法.CN201811633643.4[2024-02-15].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类