✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
玉米籽饱满度是衡量玉米籽粒质量的重要指标,对玉米的产量和品质至关重要。传统的人工测定方法费时费力,且主观性强,难以满足大规模快速检测的需求。本文提出了一种基于计算机视觉的玉米籽饱满度测定方法,利用深度学习技术自动提取玉米籽粒特征,并建立饱满度预测模型。该方法具有精度高、效率快、非破坏性等优点,可有效解决传统方法的不足,为玉米籽粒质量的快速、准确评估提供了一种新的手段。
引言
玉米是世界三大粮食作物之一,其籽粒的饱满度直接影响其品质和产量。饱满度高的玉米籽粒具有较高的营养价值和商品价值。传统上,玉米籽饱满度的测定主要依靠人工目测或仪器测量,这些方法不仅效率低下,而且主观性强,难以满足大规模快速检测的需求。
近年来,计算机视觉技术在农业领域得到了广泛应用,为玉米籽饱满度测定提供了新的思路。计算机视觉技术可以自动提取图像中的特征信息,并通过机器学习或深度学习算法建立预测模型,从而实现非破坏性、高效、准确的玉米籽饱满度测定。
本文提出的玉米籽饱满度测定方法具有以下优点:
-
**精度高:**利用深度学习技术提取玉米籽粒特征,并采用支持向量机分类器,确保了模型的高精度。
-
**效率快:**计算机视觉技术可以自动提取特征并预测饱满度,大大提高了检测效率。
-
**非破坏性:**该方法基于图像分析,无需对玉米籽粒进行物理破坏,保证了籽粒的完整性。
-
**适用性广:**该方法适用于不同品种和不同生长条件下的玉米籽粒,具有较好的泛化能力。
结论
本文提出了一种基于计算机视觉的玉米籽饱满度测定方法,该方法利用深度学习技术自动提取玉米籽粒特征,并建立饱满度预测模型。该方法具有精度高、效率快、非破坏性等优点,为玉米籽粒质量的快速、准确评估提供了一种新的手段。未来,该方法可以进一步优化,并应用于玉米籽粒的品质分级、产量预测等领域。
📣 部分代码
function varargout = cornFullness(varargin)
% CORNFULLNESS MATLAB code for cornFullness.fig
% CORNFULLNESS, by itself, creates a new CORNFULLNESS or raises the existing
% singleton*.
%
% H = CORNFULLNESS returns the handle to a new CORNFULLNESS or the handle to
% the existing singleton*.
%
% CORNFULLNESS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CORNFULLNESS.M with the given input arguments.
%
% CORNFULLNESS('Property','Value',...) creates a new CORNFULLNESS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before cornFullness_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to cornFullness_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help cornFullness
% Last Modified by GUIDE v2.5 5-Apr-2017 18:51:49
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @cornFullness_OpeningFcn, ...
'gui_OutputFcn', @cornFullness_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
⛳️ 运行结果
🔗 参考文献
[1]李佩阳,叶睿哲,陆华才.基于计算机视觉的玉米粒饱满度检测精度[J].海南热带海洋学院学报, 2021(002):028.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类