【目标检测】基于计算机视觉实现玉米籽饱满度测定附Matlab代码

本文介绍了一种利用深度学习技术改进的玉米籽饱满度测定方法,通过计算机视觉自动提取特征,建立预测模型,显著提高了检测精度、速度和非破坏性,为大规模玉米籽粒质量评估提供了高效的新工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

玉米籽饱满度是衡量玉米籽粒质量的重要指标,对玉米的产量和品质至关重要。传统的人工测定方法费时费力,且主观性强,难以满足大规模快速检测的需求。本文提出了一种基于计算机视觉的玉米籽饱满度测定方法,利用深度学习技术自动提取玉米籽粒特征,并建立饱满度预测模型。该方法具有精度高、效率快、非破坏性等优点,可有效解决传统方法的不足,为玉米籽粒质量的快速、准确评估提供了一种新的手段。

引言

玉米是世界三大粮食作物之一,其籽粒的饱满度直接影响其品质和产量。饱满度高的玉米籽粒具有较高的营养价值和商品价值。传统上,玉米籽饱满度的测定主要依靠人工目测或仪器测量,这些方法不仅效率低下,而且主观性强,难以满足大规模快速检测的需求。

近年来,计算机视觉技术在农业领域得到了广泛应用,为玉米籽饱满度测定提供了新的思路。计算机视觉技术可以自动提取图像中的特征信息,并通过机器学习或深度学习算法建立预测模型,从而实现非破坏性、高效、准确的玉米籽饱满度测定。

本文提出的玉米籽饱满度测定方法具有以下优点:

  • **精度高:**利用深度学习技术提取玉米籽粒特征,并采用支持向量机分类器,确保了模型的高精度。

  • **效率快:**计算机视觉技术可以自动提取特征并预测饱满度,大大提高了检测效率。

  • **非破坏性:**该方法基于图像分析,无需对玉米籽粒进行物理破坏,保证了籽粒的完整性。

  • **适用性广:**该方法适用于不同品种和不同生长条件下的玉米籽粒,具有较好的泛化能力。

结论

本文提出了一种基于计算机视觉的玉米籽饱满度测定方法,该方法利用深度学习技术自动提取玉米籽粒特征,并建立饱满度预测模型。该方法具有精度高、效率快、非破坏性等优点,为玉米籽粒质量的快速、准确评估提供了一种新的手段。未来,该方法可以进一步优化,并应用于玉米籽粒的品质分级、产量预测等领域。

📣 部分代码

function varargout = cornFullness(varargin)% CORNFULLNESS MATLAB code for cornFullness.fig%      CORNFULLNESS, by itself, creates a new CORNFULLNESS or raises the existing%      singleton*.%%      H = CORNFULLNESS returns the handle to a new CORNFULLNESS or the handle to%      the existing singleton*.%%      CORNFULLNESS('CALLBACK',hObject,eventData,handles,...) calls the local%      function named CALLBACK in CORNFULLNESS.M with the given input arguments.%%      CORNFULLNESS('Property','Value',...) creates a new CORNFULLNESS or raises the%      existing singleton*.  Starting from the left, property value pairs are%      applied to the GUI before cornFullness_OpeningFcn gets called.  An%      unrecognized property name or invalid value makes property application%      stop.  All inputs are passed to cornFullness_OpeningFcn via varargin.%%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one%      instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help cornFullness% Last Modified by GUIDE v2.5 5-Apr-2017 18:51:49% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name',       mfilename, ...                   'gui_Singleton',  gui_Singleton, ...                   'gui_OpeningFcn', @cornFullness_OpeningFcn, ...                   'gui_OutputFcn',  @cornFullness_OutputFcn, ...                   'gui_LayoutFcn',  [] , ...                   'gui_Callback',   []);if nargin && ischar(varargin{1})    gui_State.gui_Callback = str2func(varargin{1});endif nargout    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});else    gui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT

⛳️ 运行结果

🔗 参考文献

[1]李佩阳,叶睿哲,陆华才.基于计算机视觉的玉米粒饱满度检测精度[J].海南热带海洋学院学报, 2021(002):028.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值