✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
心脏电生理学仿真在心脏病学研究中发挥着至关重要的作用。本文介绍了一种基于龙格库塔法的数值方法,用于仿真心室心肌细胞的动作电位。该方法准确且高效,可以用于研究心脏电生理学和心脏病的机制。
引言
心脏电生理学是研究心脏电活动及其与心脏功能关系的学科。动作电位是心脏电活动的基本单位,它描述了心肌细胞膜电位的变化。动作电位的仿真对于理解心脏电生理学和心脏病的机制至关重要。
龙格库塔法
龙格库塔法是一种显式数值方法,用于求解常微分方程。它是一种单步方法,这意味着它使用当前时间步长的数据来计算下一个时间步长的数据。龙格库塔法有不同的阶数,其中四阶龙格库塔法(RK4)是最常用的。
RK4 方法的公式如下:
y_{n+1} = y_n + h * (k_1 + 2 * k_2 + 2 * k_3 + k_4) / 6
其中:
-
y_n
是当前时间步长t_n
处的值 -
y_{n+1}
是下一个时间步长t_{n+1}
处的值 -
h
是时间步长 -
k_1
、k_2
、k_3
和k_4
是中间斜率,计算如下:
k_1 = f(t_n, y_n)
k_2 = f(t_n + h/2, y_n + h/2 * k_1)
k_3 = f(t_n + h/2, y_n + h/2 * k_2)
k_4 = f(t_n + h, y_n + h * k_3)
心室心肌细胞模型
心室心肌细胞的动作电位可以由以下常微分方程系统描述:
C_m * dV/dt = -I_ion + I_stim
其中:
-
C_m
是细胞膜电容 -
V
是膜电位 -
I_ion
是离子电流 -
I_stim
是刺激电流
离子电流可以进一步分解为以下分量:
I_ion = I_Na + I_CaL + I_Ks + I_Kr + I_to + I_K1
其中:
-
I_Na
是钠电流 -
I_CaL
是钙电流 -
I_Ks
是慢延迟整流钾电流 -
I_Kr
是快速延迟整流钾电流 -
I_to
是瞬时外向整流钾电流 -
I_K1
是内向整流钾电流
仿真方法
我们使用 RK4 方法求解上述常微分方程系统。仿真步骤如下:
-
初始化细胞膜电位和离子电流。
-
计算中间斜率
k_1
、k_2
、k_3
和k_4
。 -
更新细胞膜电位和离子电流。
-
重复步骤 2 和 3 直到达到仿真时间。
仿真结果
图 1 显示了使用 RK4 方法仿真的典型心室心肌细胞动作电位。动作电位包括以下阶段:
-
**去极化:**动作电位由快速去极化开始,主要是由钠电流引起的。
-
**高原:**去极化后,膜电位保持在高原阶段,主要是由钙电流引起的。
-
**复极化:**高原后,膜电位复极化,主要是由钾电流引起的。

讨论
基于 RK4 法的心室心肌细胞动作电位仿真准确且高效。该方法可以用于研究心脏电生理学和心脏病的机制。例如,该方法可以用于仿真心律失常、心脏肥大和心肌梗塞等心脏疾病。
结论
本文介绍了一种基于 RK4 法的心室心肌细胞动作电位仿真方法。该方法准确且高效,可以用于研究心脏电生理学和心脏病的机制。
📣 部分代码
%*************************************************************************%
% Beeler-Reuter Ventricular Myocyte AP Model %
%
% Description: This function returns the values of the time derivatives %
% of state variables for use in numerical integration of the solution. %
% Most fixed model parameters are contained within this function. %
%*************************************************************************%
function pdot = BR_deriv(t,p,i_stim)
%-----------------------------------------------%
%----------------Extract St. Vars---------------%
%-----------------------------------------------%
Vm = p(1); %[mV] - Transmembrane Voltage
Ca_i = p(2); %[mol] - Intracellular Calcium
%These six are unitless channel gating parameters
x1 = p(3);
m = p(4);
h = p(5);
j = p(6);
d = p(7);
f = p(8);
%These four are ionic currents - not state var's; for output purposes only
i_K1old = p(9);
i_Naold = p(10);
i_Caold = p(11);
i_x1old = p(12);
%-----------------------------------------------%
%----------------Model Parameters---------------%
%-----------------------------------------------%
E_Na = 50.0; %[mV] - Nernst potential from Na
g_Na = 4.0; %[mmho/cm^2] - Membrane conductance parameter
g_NaC = 0.003; %[mmho/cm^2] - Membrane conductance parameter
g_s = 0.09; %[mmho/cm^2] - Membrane conductance parameter
C_m = 1.0; %[uF/cm^2] - Membrane capacitance
%Rate constant parameters for determining alpha and beta
C(:,:,1) = [5e-4 8.3e-2 50 0 0 5.7e-2 1; ...
0 0 47 -1 47 -0.1 -1; ...
0.126 -0.25 77 0 0 0 0; ...
5.5e-2 -0.25 78 0 0 -0.2 1; ...
9.5e-2 -0.01 -5 0 0 -0.072 1; ...
1.2e-2 -8.0e-3 28 0 0 0.15 1];
C(:,:,2) = [1.3e-3 -6.0e-2 20 0 0 -4.0e-2 1; ...
40 -5.6e-2 72 0 0 0 0; ...
1.7 0 22.5 0 0 -8.2e-2 1; ...
0.3 0 32 0 0 -0.1 1; ...
7.0e-2 -1.7e-2 44 0 0 5.0e-2 1; ...
6.5e-3 -2.0e-2 30 0 0 -0.2 1];
%-----------------------------------------------%
%------------Preliminary Calculations-----------%
%-----------------------------------------------%
%Calculate alpha and beta values
a_b = (C(:,1,:) .* exp(C(:,2,:) .* (Vm + C(:,3,:))) + C(:,4,:) .* (Vm + C(:,5,:)))...
./(exp(C(:,6,:) .* (Vm + C(:,3,:))) + C(:,7,:));
%Calculate y_inf and tau
y_inf = a_b(:,:,1)./(a_b(:,:,1) + a_b(:,:,2));
tau = (a_b(:,:,1) + a_b(:,:,2)).^-1;
E_Ca = -82.3 - 13.0287 * log(Ca_i);
%-----------------------------------------------%
%----------Ionic Current Calculations-----------%
%-----------------------------------------------%
i_K1 = 0.35 * (4 * (exp(0.04 * (Vm + 85)) - 1) / (exp(0.08 * (Vm + 53))...
+ exp(0.04 * (Vm + 53))) + 0.2 * ((Vm + 23) / (1 - exp(-0.04 * (Vm + 23)))));
i_x1 = (x1) * 0.8 * (exp(0.04 * (Vm + 77)) - 1)/exp(0.04 * (Vm + 35));
i_Na = (g_Na * m^3 * h * j + g_NaC) * (Vm - E_Na);
i_Ca = g_s * d * f * (Vm - E_Ca);
%-----------------------------------------------%
%------------Derivative Calculations------------%
%-----------------------------------------------%
pdot(1,1) = -(1/C_m) * (i_K1 + i_x1 + i_Na + i_Ca - i_stim); %dVm/dt
pdot(2,1) = -1e-7 * i_Ca + 0.07 * (1e-7 - Ca_i); %d[Ca]/dt
pdot(3:8,1) = (y_inf - p(3:8)) ./ tau;
pdot(9,1) = i_K1 - i_K1old;
pdot(10,1) = i_Na - i_Naold;
pdot(11,1) = i_Ca - i_Caold;
pdot(12,1) = i_x1 - i_x1old;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类