【心脏仿真】基于龙格库塔法实现心室心肌细胞动作电位仿真附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

心脏电生理学仿真在心脏病学研究中发挥着至关重要的作用。本文介绍了一种基于龙格库塔法的数值方法,用于仿真心室心肌细胞的动作电位。该方法准确且高效,可以用于研究心脏电生理学和心脏病的机制。

引言

心脏电生理学是研究心脏电活动及其与心脏功能关系的学科。动作电位是心脏电活动的基本单位,它描述了心肌细胞膜电位的变化。动作电位的仿真对于理解心脏电生理学和心脏病的机制至关重要。

龙格库塔法

龙格库塔法是一种显式数值方法,用于求解常微分方程。它是一种单步方法,这意味着它使用当前时间步长的数据来计算下一个时间步长的数据。龙格库塔法有不同的阶数,其中四阶龙格库塔法(RK4)是最常用的。

RK4 方法的公式如下:

 

y_{n+1} = y_n + h * (k_1 + 2 * k_2 + 2 * k_3 + k_4) / 6

其中:

  • y_n 是当前时间步长 t_n 处的值

  • y_{n+1} 是下一个时间步长 t_{n+1} 处的值

  • h 是时间步长

  • k_1k_2k_3 和 k_4 是中间斜率,计算如下:

 

k_1 = f(t_n, y_n)
k_2 = f(t_n + h/2, y_n + h/2 * k_1)
k_3 = f(t_n + h/2, y_n + h/2 * k_2)
k_4 = f(t_n + h, y_n + h * k_3)

心室心肌细胞模型

心室心肌细胞的动作电位可以由以下常微分方程系统描述:

 

C_m * dV/dt = -I_ion + I_stim

其中:

  • C_m 是细胞膜电容

  • V 是膜电位

  • I_ion 是离子电流

  • I_stim 是刺激电流

离子电流可以进一步分解为以下分量:

 

I_ion = I_Na + I_CaL + I_Ks + I_Kr + I_to + I_K1

其中:

  • I_Na 是钠电流

  • I_CaL 是钙电流

  • I_Ks 是慢延迟整流钾电流

  • I_Kr 是快速延迟整流钾电流

  • I_to 是瞬时外向整流钾电流

  • I_K1 是内向整流钾电流

仿真方法

我们使用 RK4 方法求解上述常微分方程系统。仿真步骤如下:

  1. 初始化细胞膜电位和离子电流。

  2. 计算中间斜率 k_1k_2k_3 和 k_4

  3. 更新细胞膜电位和离子电流。

  4. 重复步骤 2 和 3 直到达到仿真时间。

仿真结果

图 1 显示了使用 RK4 方法仿真的典型心室心肌细胞动作电位。动作电位包括以下阶段:

  • **去极化:**动作电位由快速去极化开始,主要是由钠电流引起的。

  • **高原:**去极化后,膜电位保持在高原阶段,主要是由钙电流引起的。

  • **复极化:**高原后,膜电位复极化,主要是由钾电流引起的。

![图 1:心室心肌细胞动作电位仿真](图 1.png)

讨论

基于 RK4 法的心室心肌细胞动作电位仿真准确且高效。该方法可以用于研究心脏电生理学和心脏病的机制。例如,该方法可以用于仿真心律失常、心脏肥大和心肌梗塞等心脏疾病。

结论

本文介绍了一种基于 RK4 法的心室心肌细胞动作电位仿真方法。该方法准确且高效,可以用于研究心脏电生理学和心脏病的机制。

📣 部分代码

%*************************************************************************%%   Beeler-Reuter Ventricular Myocyte AP Model                            %                                               %%   Description: This function returns the values of the time derivatives %%   of state variables for use in numerical integration of the solution.  %%   Most fixed model parameters are contained within this function.       %%*************************************************************************%function pdot = BR_deriv(t,p,i_stim)%-----------------------------------------------%%----------------Extract St. Vars---------------%%-----------------------------------------------%Vm   = p(1);     %[mV] - Transmembrane VoltageCa_i = p(2);     %[mol] - Intracellular Calcium%These six are unitless channel gating parametersx1 = p(3);     m  = p(4);h  = p(5);j  = p(6);d  = p(7);f  = p(8);%These four are ionic currents - not state var's; for output purposes onlyi_K1old = p(9);i_Naold = p(10);i_Caold = p(11);i_x1old = p(12);%-----------------------------------------------%%----------------Model Parameters---------------%%-----------------------------------------------%E_Na  = 50.0;        %[mV]        - Nernst potential from Nag_Na  = 4.0;         %[mmho/cm^2] - Membrane conductance parameterg_NaC = 0.003;       %[mmho/cm^2] - Membrane conductance parameterg_s   = 0.09;        %[mmho/cm^2] - Membrane conductance parameterC_m   = 1.0;         %[uF/cm^2]   - Membrane capacitance%Rate constant parameters for determining alpha and betaC(:,:,1) = [5e-4   8.3e-2  50  0   0   5.7e-2  1; ...            0      0       47  -1  47  -0.1   -1; ...            0.126  -0.25   77  0   0   0       0; ...            5.5e-2 -0.25   78  0   0   -0.2    1; ...            9.5e-2 -0.01   -5  0   0   -0.072  1; ...            1.2e-2 -8.0e-3 28  0   0   0.15    1];      C(:,:,2) = [1.3e-3 -6.0e-2 20  0   0   -4.0e-2 1; ...            40     -5.6e-2 72  0   0   0       0; ...            1.7    0      22.5 0   0   -8.2e-2 1; ...            0.3    0       32  0   0   -0.1    1; ...            7.0e-2 -1.7e-2 44  0   0   5.0e-2  1; ...            6.5e-3 -2.0e-2 30  0   0   -0.2    1];%-----------------------------------------------%%------------Preliminary Calculations-----------%%-----------------------------------------------%%Calculate alpha and beta valuesa_b = (C(:,1,:) .* exp(C(:,2,:) .* (Vm + C(:,3,:))) + C(:,4,:) .* (Vm + C(:,5,:)))...            ./(exp(C(:,6,:) .* (Vm + C(:,3,:))) + C(:,7,:));%Calculate y_inf and tauy_inf = a_b(:,:,1)./(a_b(:,:,1) + a_b(:,:,2));tau   = (a_b(:,:,1) + a_b(:,:,2)).^-1;E_Ca  = -82.3 - 13.0287 * log(Ca_i);%-----------------------------------------------%%----------Ionic Current Calculations-----------%%-----------------------------------------------%i_K1 = 0.35 * (4 * (exp(0.04 * (Vm + 85)) - 1) / (exp(0.08 * (Vm + 53))...     + exp(0.04 * (Vm + 53))) + 0.2 * ((Vm + 23) / (1 - exp(-0.04 * (Vm + 23)))));i_x1 = (x1) * 0.8 * (exp(0.04 * (Vm + 77)) - 1)/exp(0.04 * (Vm + 35));i_Na = (g_Na * m^3 * h * j + g_NaC) * (Vm - E_Na);i_Ca = g_s * d * f * (Vm - E_Ca);%-----------------------------------------------%%------------Derivative Calculations------------%%-----------------------------------------------%pdot(1,1)   = -(1/C_m) * (i_K1 + i_x1 + i_Na + i_Ca - i_stim);  %dVm/dtpdot(2,1)   = -1e-7 * i_Ca + 0.07 * (1e-7 - Ca_i);              %d[Ca]/dtpdot(3:8,1) = (y_inf - p(3:8)) ./ tau;pdot(9,1)   = i_K1 - i_K1old;pdot(10,1)  = i_Na - i_Naold;pdot(11,1)  = i_Ca - i_Caold;pdot(12,1)  = i_x1 - i_x1old;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值