【路径规划】基于A_Star融合灰狼算法GWO求解多仓库机器人送货路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文针对多仓库机器人送货路径规划问题,提出一种基于 A_Star 融合灰狼算法 GWO 的求解方法。详细分析 A_Star 算法和灰狼算法 GWO 的原理与优缺点,设计融合策略,将 A_Star 算法的启发式搜索特性与 GWO 算法的全局寻优能力相结合。构建包含多仓库、多机器人、多订单的路径规划模型,考虑仓库布局、障碍物分布、机器人容量等约束条件。通过仿真实验,对比传统 A_Star 算法、GWO 算法以及其他路径规划算法,验证融合算法在路径规划效率、路径长度优化和全局寻优能力等方面的优越性,为多仓库机器人送货系统提供高效的路径规划解决方案。

关键词

路径规划;A_Star 算法;灰狼算法 GWO;多仓库机器人;算法融合

一、引言

1.1 研究背景与意义

随着电商行业的快速发展和物流自动化水平的不断提高,多仓库机器人送货系统在物流领域的应用日益广泛 。在多仓库机器人送货场景中,合理规划机器人的送货路径,能够有效提高物流配送效率、降低运营成本、提升客户满意度 。然而,多仓库环境下路径规划面临诸多挑战,如仓库布局复杂、订单任务多样、障碍物动态变化等,传统的路径规划方法难以满足实际需求 。

A_Star 算法是一种经典的启发式路径规划算法,具有搜索效率高、能快速找到局部最优解的特点;灰狼算法 GWO 模拟狼群狩猎行为,在全局寻优方面表现出色 。将 A_Star 算法与 GWO 算法融合,有望结合两者优势,解决多仓库机器人送货路径规划中的复杂问题,对推动物流自动化发展具有重要的现实意义。

1.2 国内外研究现状

国外在机器人路径规划领域起步较早,研究成果丰富。早期主要采用 Dijkstra 算法、A_Star 算法等进行路径规划 。随着智能算法的发展,遗传算法、粒子群算法、蚁群算法等被广泛应用于路径规划问题 。在多仓库机器人路径规划方面,部分研究通过改进算法或结合多种算法,提高路径规划的效率和质量 。

国内相关研究也在不断跟进,学者们针对不同的应用场景,对路径规划算法进行改进和优化 。一些研究将深度学习与传统路径规划算法相结合,提升算法对复杂环境的适应性;部分研究通过改进智能算法的参数调整策略,提高算法的收敛速度和寻优能力 。但目前对于 A_Star 算法与 GWO 算法融合应用于多仓库机器人送货路径规划的研究相对较少,仍有较大的探索空间。

1.3 研究内容与方法

本研究主要内容包括:分析 A_Star 算法和 GWO 算法的原理及优缺点;设计 A_Star 算法与 GWO 算法的融合策略;构建多仓库机器人送货路径规划模型,明确模型的目标函数和约束条件;通过仿真实验,对比融合算法与其他算法的性能,验证融合算法的有效性 。研究方法上,采用理论分析与仿真实验相结合,运用算法原理推导和数学建模方法构建规划模型,利用 MATLAB 等软件进行算法实现和仿真实验。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值