✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
信道估计是无线通信系统中的一项关键技术,用于估计无线信道特性,如信道响应、衰落和多径。本文介绍了两种基于压缩感知 (CS) 的信道估计算法:正交匹配追踪 (OMP) 和最小二乘法 (LS)。这些算法利用 CS 原理,从少量测量中恢复稀疏信号,从而实现高分辨率信道估计。
引言
信道估计是无线通信系统中至关重要的环节,它能够估计无线信道的特性,如信道响应、衰落和多径。准确的信道估计对于提高通信系统的性能至关重要,例如提高数据传输速率、降低误码率和增强抗干扰能力。
传统的信道估计方法通常需要大量的测量数据,这在实际应用中可能不可行。压缩感知 (CS) 是一种新的信号处理技术,它能够从少量测量中恢复稀疏信号。因此,基于 CS 的信道估计算法可以显著减少测量数据的数量,从而实现高分辨率信道估计。
基于压缩感知的信道估计
CS 理论表明,如果一个信号是稀疏的,即它只有少数非零元素,那么可以从比信号长度少得多的测量中恢复该信号。基于 CS 的信道估计算法利用了这一原理,将信道估计问题转化为稀疏信号恢复问题。
信道估计模型可以表示为:
y = Hx + n
其中:
-
y 是接收信号向量
-
H 是信道矩阵
-
x 是信道响应向量
-
n 是噪声向量
如果信道响应向量 x 是稀疏的,那么可以利用 CS 算法从测量向量 y 中恢复 x。
正交匹配追踪 (OMP) 算法
OMP 算法是一种贪婪算法,它通过迭代地选择最相关的测量值来恢复稀疏信号。OMP 算法的步骤如下:
-
初始化残差向量 r0 = y
-
对于 k = 1, 2, ..., m
-
计算残差向量 rk-1 与所有测量向量的相关性
-
选择相关性最大的测量向量,将其添加到支持集中
-
更新信道矩阵 Hk 和残差向量 rk
-
-
输出信道响应估计值 x = Hk+1^† y
其中 m 是测量向量的数量,Hk+1 是由支持集中测量向量组成的矩阵,^† 表示伪逆运算。
最小二乘法 (LS) 算法
LS 算法是一种基于最小二乘法的信道估计算法。LS 算法的步骤如下:
-
构造正则化问题:
min ||y - Hx||^2 + λ||x||_1
其中 λ 是正则化参数,||x||_1 是 x 的 L1 范数。
-
求解正则化问题,得到信道响应估计值 x。
仿真结果
为了评估基于 CS 的信道估计算法的性能,我们进行了仿真实验。仿真设置如下:
-
信道长度:L = 100
-
测量向量数量:m = 50
-
信噪比:SNR = 10 dB
仿真结果表明,基于 CS 的 OMP 和 LS 算法都能够从少量测量中准确地估计信道响应。OMP 算法的性能略优于 LS 算法,但计算复杂度也更高。
结论
本文介绍了基于压缩感知的信道估计算法,包括正交匹配追踪 (OMP) 和最小二乘法 (LS) 算法。这些算法利用 CS 原理,从少量测量中恢复稀疏信号,从而实现高分辨率信道估计。仿真结果表明,这些算法能够有效地估计信道响应,为无线通信系统中的信道估计提供了新的方法。道估计性能。
4. 结论
本文提出了一种基于压缩感知正交匹配追踪(OMP)和最小二乘法(LS)的信道估计方法。该方法利用CS的稀疏性原理,将信道估计问题转化为稀疏信号恢复问题,并通过OMP和LS算法实现信道估计。仿真结果表明,该方法在低信噪比条件下具有良好的信道估计性能。
📣 部分代码
%seqnum_compare.m
%频域信道估计主函数,调用了channel和MSE_com两个函数
clc;
clear all;
L1=31;
taps=6;%抽头数6
K=taps;%单个信道的稀疏度为6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%---------------------------频域的信道冲激响应----------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l1=channel(L1,taps);%调用信道函数产生时域的信道冲激响应l1,抽头数6,信号长度31
l2=channel(L1,taps);%调用信道函数产生时域的信道冲激响应l2,抽头数6,信号长度31
h=cat(2,l1,l2)';%将l1,l2左右拼接起来并转置为列向量,信道稀疏度为12
L=size(h,1);%时域的信道脉冲响应的行数62
cs=zeros(3,7);%基于压缩感知最小二乘法的信道估计的均方差构成的矩阵初始化
ls=zeros(3,7);%基于最小二乘法的信道估计的均方差构成的矩阵初始化
mmse=zeros(3,7);%基于最小均方误差的信道估计的均方差构成的矩阵初始化
for t=1:3
N1=16*t;%训练序列长度变化三次
N=N1*2;
[cs_mse_ave,ls_mse_ave,mmse_mse_ave]=MSE_com(N,L,K,h,N1);
cs(t,:)=cs_mse_ave;
ls(t,:)=ls_mse_ave;
mmse(t,:)=mmse_mse_ave;
end
⛳️ 运行结果
🔗 参考文献
[1]彭云柯.基于压缩感知的MIMO-OFDM系统信道估计[D].北京理工大学[2024-03-30].DOI:CNKI:CDMD:2.1015.029900.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类