【心脏】基于matlab的I心脏和大动脉运动仿真

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

心脏和大动脉的运动是维持人体生命活动的关键因素。随着医学影像技术的发展,对心脏和大动脉运动进行准确的仿真变得至关重要。心脏和大动脉运动仿真可以为临床诊断、治疗规划和外科手术提供重要的依据。

心脏运动仿真

心脏运动仿真主要包括心肌收缩、瓣膜运动和心腔容积变化三个方面。

  • **心肌收缩:**心肌收缩是心脏运动的基础。通过建立心肌收缩模型,可以模拟心肌纤维的收缩过程,从而得到心脏的收缩和舒张运动。

  • **瓣膜运动:**瓣膜运动是心脏泵血的关键。通过建立瓣膜运动模型,可以模拟瓣膜的开合过程,从而得到心脏的血流动力学特性。

  • **心腔容积变化:**心腔容积变化反映了心脏的容积负荷。通过建立心腔容积变化模型,可以模拟心脏在不同负荷下的容积变化,从而评估心脏的功能状态。

大动脉运动仿真

大动脉运动仿真主要包括动脉壁变形、血流动力学和壁应力分布三个方面。

  • **动脉壁变形:**动脉壁变形是动脉运动的基础。通过建立动脉壁变形模型,可以模拟动脉壁在血流作用下的变形过程,从而得到动脉的几何形状和力学特性。

  • **血流动力学:**血流动力学是动脉运动的驱动力。通过建立血流动力学模型,可以模拟动脉内的血流速度、压力和剪切应力,从而评估动脉的血液供应情况。

  • **壁应力分布:**壁应力分布反映了动脉壁承受的力学载荷。通过建立壁应力分布模型,可以模拟动脉壁上的应力分布,从而评估动脉的力学稳定性。

仿真方法

心脏和大动脉运动仿真主要采用以下方法:

  • **有限元法:**有限元法是一种广泛应用于力学分析的数值仿真方法。通过将心脏和大动脉离散为有限个单元,可以求解单元之间的相互作用,从而得到心脏和大动脉的运动和力学特性。

  • **流体-固体耦合法:**流体-固体耦合法是一种模拟流体与固体相互作用的数值仿真方法。通过将心脏和大动脉建模为流体和固体,可以模拟血流对心脏和大动脉壁的作用,从而得到心脏和大动脉的运动和血流动力学特性。

  • **机器学习:**机器学习是一种基于数据训练的仿真方法。通过收集大量的心脏和大动脉运动数据,可以训练机器学习模型,从而预测心脏和大动脉的运动和力学特性。

应用

心脏和大动脉运动仿真在临床医学中具有广泛的应用,主要包括:

  • **临床诊断:**心脏和大动脉运动仿真可以帮助诊断心脏瓣膜疾病、冠状动脉疾病和主动脉夹层等疾病。

  • **治疗规划:**心脏和大动脉运动仿真可以为心脏瓣膜置换、冠状动脉搭桥和主动脉瘤修复等手术提供术前规划。

  • **外科手术:**心脏和大动脉运动仿真可以指导外科手术,提高手术的安全性和有效性。

结论

心脏和大动脉运动仿真是医学影像技术发展的重要成果。通过准确的仿真,可以深入了解心脏和大动脉的运动和力学特性,为临床诊断、治疗规划和外科手术提供重要的依据。随着仿真技术的不断发展,心脏和大动脉运动仿真将发挥越来越重要的作用。

📣 部分代码

function V3model(R,C,EOA,Emax,LVEDV)%V3MODEL Ventricular-Valvular-Vascular mathematical model%   V3MODEL(HR,R,C,EOA,Emax)%   Mathematical model of the cardiovascular system in the presence of aortic stenosis %   For details: Am J Physiol Heart Circ Physiol 288: H1874朒1884, 2005%   HR = heart rate (beats per minute)%   R = vascular resistance (mmHg.s/mL)%   C = arterial compliance (mL/mmHg)%   EOA = effective orifice area (cm^2)%   Emax = maximal elastance (mmHg/mL)%global PARAM DataE%% Unchanged cardiovascular parameters% Typical normal parametersif nargin == 4    LVEDV = 120*1e-6;   % LV end-diastolic volume (L)else    LVEDV = LVEDV*1e-6;endV0 = -15*1e-6;      % extrapolated unloaded volume (L)Aa = 5;             % aortic cross-sectional area (cm^2)Pve = 5*133.33;     % venous pressure (Pa)Z0 = 0.07*133.33e6; % characteristic impedance (Pa.s/L)HR = 70;            % heart rate (bpm)T = 60/HR;          % cardiac period%% Input parameters (SI units)R = R*133.33e6;                 % vascular resistanceC = C/133.33e6;                 % arterial complianceELCo = EOA*Aa/(Aa-EOA)*1e-4;    % energy loss areaEmax = Emax*133.33e6;           % maximal elastanceRC = R*C;                       % RC product​V0) where E is the elastance.    %% Time when ejection begins is noted tR.    %% -- bisection method --        err = Inf;    t0 = 0; t1 = tp;    while err > 1e-4        t2 = (t0+t1)/2;        y1 = elastance(t1,Emax,tp,DataE)-DPAo1/(LVEDV-V0);        y2 = elastance(t2,Emax,tp,DataE)-DPAo1/(LVEDV-V0);        if y1*y2>0, t1 = t2; else t0 = t2; end        tR = (t0+t1)/2;        err = abs(t1-t0)/tR;        end            %% We now solve the differential equation describing the LV volume    %% throughout the ejection period        options = odeset('RelTol',1e-2,'Events',@events);    [t,y] = ode45(@volume,[tR T],[LVEDV 0 0],options);            %% Cardiac outflow in L/s    Q = -y(:,2);            %% Corresponding end-diastolic aortic pressure    dtQ = -y(:,3);    Qtmp = (Z0+R)/R*Q + C*Z0*dtQ;    DPAo2 = DPAo1;    DPAo1 = trapz(t,Qtmp.*exp((t-t(1))/RC))/C/(exp(T/RC)-1)+Pve;        %% Updating the error variables    errDPAo2 = errDPAo1;    errDPAo1 = abs(DPAo2-DPAo1)/133.33;        %% Waitbar    % waitbar(1-abs(DPAo1-DPAo2)/DPAo1+errDPAo,h)        n = n+1;end% close(h)% if ~(n<(nFIN+1) && errDPAo1<errDPAo2)%     errordlg({'The algorithm did not converge !';'';'EXIT'},...%         'Convergence error')%     return% end%% LV volumetLVV = t;LVV = y(:,1);%% Aortic pressure throughout the cardiac period% (time origin = ejection onset)Tend = t(end);dtQ = [dtQ(1:end-1)' zeros(1,100)];Q = [Q' zeros(1,99)];t = [t(1:end-1)' linspace(Tend,T+t(1),100)]-t(1);Qtmp = (Z0+R)/R*Q + C*Z0*dtQ + Pve/R;​

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值