✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
心脏和大动脉的运动是维持人体生命活动的关键因素。随着医学影像技术的发展,对心脏和大动脉运动进行准确的仿真变得至关重要。心脏和大动脉运动仿真可以为临床诊断、治疗规划和外科手术提供重要的依据。
心脏运动仿真
心脏运动仿真主要包括心肌收缩、瓣膜运动和心腔容积变化三个方面。
-
**心肌收缩:**心肌收缩是心脏运动的基础。通过建立心肌收缩模型,可以模拟心肌纤维的收缩过程,从而得到心脏的收缩和舒张运动。
-
**瓣膜运动:**瓣膜运动是心脏泵血的关键。通过建立瓣膜运动模型,可以模拟瓣膜的开合过程,从而得到心脏的血流动力学特性。
-
**心腔容积变化:**心腔容积变化反映了心脏的容积负荷。通过建立心腔容积变化模型,可以模拟心脏在不同负荷下的容积变化,从而评估心脏的功能状态。
大动脉运动仿真
大动脉运动仿真主要包括动脉壁变形、血流动力学和壁应力分布三个方面。
-
**动脉壁变形:**动脉壁变形是动脉运动的基础。通过建立动脉壁变形模型,可以模拟动脉壁在血流作用下的变形过程,从而得到动脉的几何形状和力学特性。
-
**血流动力学:**血流动力学是动脉运动的驱动力。通过建立血流动力学模型,可以模拟动脉内的血流速度、压力和剪切应力,从而评估动脉的血液供应情况。
-
**壁应力分布:**壁应力分布反映了动脉壁承受的力学载荷。通过建立壁应力分布模型,可以模拟动脉壁上的应力分布,从而评估动脉的力学稳定性。
仿真方法
心脏和大动脉运动仿真主要采用以下方法:
-
**有限元法:**有限元法是一种广泛应用于力学分析的数值仿真方法。通过将心脏和大动脉离散为有限个单元,可以求解单元之间的相互作用,从而得到心脏和大动脉的运动和力学特性。
-
**流体-固体耦合法:**流体-固体耦合法是一种模拟流体与固体相互作用的数值仿真方法。通过将心脏和大动脉建模为流体和固体,可以模拟血流对心脏和大动脉壁的作用,从而得到心脏和大动脉的运动和血流动力学特性。
-
**机器学习:**机器学习是一种基于数据训练的仿真方法。通过收集大量的心脏和大动脉运动数据,可以训练机器学习模型,从而预测心脏和大动脉的运动和力学特性。
应用
心脏和大动脉运动仿真在临床医学中具有广泛的应用,主要包括:
-
**临床诊断:**心脏和大动脉运动仿真可以帮助诊断心脏瓣膜疾病、冠状动脉疾病和主动脉夹层等疾病。
-
**治疗规划:**心脏和大动脉运动仿真可以为心脏瓣膜置换、冠状动脉搭桥和主动脉瘤修复等手术提供术前规划。
-
**外科手术:**心脏和大动脉运动仿真可以指导外科手术,提高手术的安全性和有效性。
结论
心脏和大动脉运动仿真是医学影像技术发展的重要成果。通过准确的仿真,可以深入了解心脏和大动脉的运动和力学特性,为临床诊断、治疗规划和外科手术提供重要的依据。随着仿真技术的不断发展,心脏和大动脉运动仿真将发挥越来越重要的作用。
📣 部分代码
function V3model(R,C,EOA,Emax,LVEDV)
%V3MODEL Ventricular-Valvular-Vascular mathematical model
% V3MODEL(HR,R,C,EOA,Emax)
% Mathematical model of the cardiovascular system in the presence of aortic stenosis
% For details: Am J Physiol Heart Circ Physiol 288: H1874朒1884, 2005
% HR = heart rate (beats per minute)
% R = vascular resistance (mmHg.s/mL)
% C = arterial compliance (mL/mmHg)
% EOA = effective orifice area (cm^2)
% Emax = maximal elastance (mmHg/mL)
%
global PARAM DataE
%% Unchanged cardiovascular parameters
% Typical normal parameters
if nargin == 4
LVEDV = 120*1e-6; % LV end-diastolic volume (L)
else
LVEDV = LVEDV*1e-6;
end
V0 = -15*1e-6; % extrapolated unloaded volume (L)
Aa = 5; % aortic cross-sectional area (cm^2)
Pve = 5*133.33; % venous pressure (Pa)
Z0 = 0.07*133.33e6; % characteristic impedance (Pa.s/L)
HR = 70; % heart rate (bpm)
T = 60/HR; % cardiac period
%% Input parameters (SI units)
R = R*133.33e6; % vascular resistance
C = C/133.33e6; % arterial compliance
ELCo = EOA*Aa/(Aa-EOA)*1e-4; % energy loss area
Emax = Emax*133.33e6; % maximal elastance
RC = R*C; % RC productV0) where E is the elastance. %% Time when ejection begins is noted tR.
%% -- bisection method --
err = Inf;
t0 = 0; t1 = tp;
while err > 1e-4
t2 = (t0+t1)/2;
y1 = elastance(t1,Emax,tp,DataE)-DPAo1/(LVEDV-V0);
y2 = elastance(t2,Emax,tp,DataE)-DPAo1/(LVEDV-V0);
if y1*y2>0, t1 = t2; else t0 = t2; end
tR = (t0+t1)/2;
err = abs(t1-t0)/tR;
end
%% We now solve the differential equation describing the LV volume
%% throughout the ejection period
options = odeset('RelTol',1e-2,'Events',@events);
[t,y] = ode45(@volume,[tR T],[LVEDV 0 0],options);
%% Cardiac outflow in L/s
Q = -y(:,2);
%% Corresponding end-diastolic aortic pressure
dtQ = -y(:,3);
Qtmp = (Z0+R)/R*Q + C*Z0*dtQ;
DPAo2 = DPAo1;
DPAo1 = trapz(t,Qtmp.*exp((t-t(1))/RC))/C/(exp(T/RC)-1)+Pve;
%% Updating the error variables
errDPAo2 = errDPAo1;
errDPAo1 = abs(DPAo2-DPAo1)/133.33;
%% Waitbar
% waitbar(1-abs(DPAo1-DPAo2)/DPAo1+errDPAo,h)
n = n+1;
end
% close(h)
% if ~(n<(nFIN+1) && errDPAo1<errDPAo2)
% errordlg({'The algorithm did not converge !';'';'EXIT'},...
% 'Convergence error')
% return
% end
%% LV volume
tLVV = t;
LVV = y(:,1);
%% Aortic pressure throughout the cardiac period
% (time origin = ejection onset)
Tend = t(end);
dtQ = [dtQ(1:end-1)' zeros(1,100)];
Q = [Q' zeros(1,99)];
t = [t(1:end-1)' linspace(Tend,T+t(1),100)]-t(1);Qtmp = (Z0+R)/R*Q + C*Z0*dtQ + Pve/R;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类