回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 概述

风电作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。然而,风电出力具有随机性和波动性,对电网的安全稳定运行带来了挑战。因此,准确预测风电出力对于提高电网运行效率和降低运行成本至关重要。

近年来,深度学习技术在风电出力预测领域取得了显著进展,其中长短时记忆神经网络(LSTM)因其强大的时序数据处理能力而备受关注。然而,传统LSTM模型在处理长期依赖关系和非线性关系时存在一定的局限性。

为了克服传统LSTM模型的不足,本文提出了一种基于雪融算法优化长短时记忆SAO-LSTM模型,用于风电出力预测。该模型将雪融算法引入LSTM模型的权重更新过程,有效提升了模型的学习能力和预测精度。

2. 相关工作

近年来,国内外学者对风电出力预测进行了大量的研究,并取得了丰硕的成果。

  • 传统统计方法:包括时间序列分析、自回归模型、ARIMA模型等,这些方法简单易行,但对非线性关系的处理能力有限。

  • 机器学习方法:包括支持向量机、随机森林、梯度提升树等,这些方法能够处理非线性关系,但对数据的依赖性强,泛化能力有限。

  • 深度学习方法:包括卷积神经网络(CNN)、循环神经网络(RNN)、LSTM等,这些方法能够有效处理时序数据和非线性关系,预测精度更高。

其中,LSTM模型因其强大的时序数据处理能力而备受关注。然而,传统LSTM模型在处理长期依赖关系和非线性关系时存在一定的局限性。

3. SAO-LSTM模型

为了克服传统LSTM模型的不足,本文提出了一种基于雪融算法优化长短时记忆SAO-LSTM模型,用于风电出力预测。该模型将雪融算法引入LSTM模型的权重更新过程,有效提升了模型的学习能力和预测精度。

3.1 雪融算法

雪融算法是一种基于自然界雪融现象的优化算法,其原理是模拟雪球在融化过程中体积逐渐减小,最终消失的过程。雪融算法具有全局搜索能力强、收敛速度快等优点。

3.2 SAO-LSTM模型结构

SAO-LSTM模型结构如图1所示:

SAO-LSTM模型由输入层、LSTM层、雪融算法层和输出层组成。

  • 输入层:接收风电出力历史数据和相关气象数据。

  • LSTM层:利用LSTM单元处理时序数据,提取数据中的长期依赖关系和非线性关系。

  • 雪融算法层:将雪融算法引入LSTM模型的权重更新过程,提升模型的学习能力和预测精度。

  • 输出层:输出风电出力预测值。

3.3 SAO-LSTM模型训练

SAO-LSTM模型训练过程如下:

  1. 将风电出力历史数据和相关气象数据输入模型。

  2. 利用LSTM单元处理时序数据,提取数据中的长期依赖关系和非线性关系。

  3. 将雪融算法引入LSTM模型的权重更新过程,提升模型的学习能力和预测精度。

  4. 将预测值与实际值进行比较,计算损失函数。

  5. 利用优化算法更新模型参数,降低损失函数值。

  6. 重复步骤2-5,直至模型收敛。

4结论

实验结果表明,SAO-LSTM模型在风电出力预测方面取得了显著的成果,其预测精度明显高于传统LSTM模型。

5. 总结

本文提出了一种基于雪融算法优化长短时记忆SAO-LSTM模型,用于风电出力预测。该模型将雪融算法引入LSTM模型的权重更新过程,有效提升了模型的学习能力和预测精度。实验结果表明,SAO-LSTM模型在风电出力预测方面取得了显著的成果,其预测精度明显高于传统LSTM模型。

📣 部分代码

% Charlesquin Kemajou Mbakam: mbakamkemajou@gmail.org%% Maximum Marignal Likelihood estimation of parametersfunction [theta_EB, b_EB, sigma_EB, results] = SAPG_algorithm_laplace(y, op)    tic;    %% Setup    % initialisation for MYULA sampler    if not(isfield(op, 'X0'))        op.X0 = y; %by default we assume dim(x)=dim(y) if nothing is specified and use X0=y    end    % Stop criteria (relative change tolerance)    if not(isfield(op, 'stopTol'))        op.stopTol = -1; % if no stopTol was defined we set it to a negative value so it's ignored.        % in this case the SAPG algo. will stop after op.samples iterations    end    if not(isfield(op, 'warmup'))        op.warmup=100;       %use 100 by default    end    %% MYULA sampler    dimX=numel(op.X0);    warm_sample = op.warm_sample;    warmupSteps=op.warmup;    err_warm(1) = MSE(op.X0, op.x);    err_warm(warmupSteps) = 0;    lamb =  op.lambda;    gam =  op.gamma;    results.lambda = lamb;    results.gamma = gam;    %% SAPG algorithm    total_iter=op.samples;    % theta    min_theta = op.min_th;    max_theta = op.max_th;    % b    b_init = op.b_init;    min_b  = op.min_b;    max_b = op.max_b;    % sigma    sigma = op.sigma;    sigma = sigma^2;    sigma_init = op.sigma_init;    min_sigma = min(op.sigma_min, op.sigma_max);    max_sigma = max(op.sigma_min, op.sigma_max);    % Step size    delta = @(i) op.d_scale*( (i^(-op.d_exp)) /dimX );    %% Functions related to Bayesian model    proxG =op.proxG;% Proximal operator of non-smooth part    logPi = op.logPi;% We use this scalar summary to monitor convergence    gradF_b = op.grad_b;    gradF = op.gradF;% Gradient of smooth part    gradF_sigma = op.gradF_sigma;    g = op.g;    %% MYULA Warm-up    X_wu = op.X0;    if(warmupSteps > 0)        % Run MYULA sampler with fix theta to warm up the markov chain        fix_theta = op.th_init;        fix_b = op.b_init;        fix_sigma = op.sigma_init;        logPiTrace_WU(op.warmup) = 0;        % Run MYULA sampling from the posterior of X:        proxGX_wu = proxG(X_wu, lamb, fix_theta);        fprintf('Running Warm up...     \n');        for ii = 2:warmupSteps            %Sample from posterior with MYULA:            X_wu =  X_wu + gam * (proxGX_wu-X_wu)/lamb - ...                gam*gradF(X_wu, fix_b, fix_sigma) + sqrt(2*gam)*randn(size(X_wu));            X_wu = abs(X_wu);            proxGX_wu = proxG(X_wu,lamb,fix_theta);            %Save current state to monitor convergence                logPiTrace_WU(ii) = logPi(X_wu,fix_theta,  fix_b, fix_sigma);            %Display Progress            if mod(ii, round(op.warmup / 100)) == 0                fprintf('\b\b\b\b\t%2d%%', round(ii / (op.warmup) * 100));            end        end        results.logPiTrace_WU=logPiTrace_WU;    end    %% Run SAPG algorithm to estimate theta and b and sigma2    % theta    thetas(total_iter)=0;    thetas(1)=op.th_init;    % sigma    sigmas(1) = sigma_init;    sigmas(total_iter) = 0;    % b    bs(total_iter) = 0;    bs(1) = b_init;    % tolerance    tol_thetas(total_iter) =0;    tol_bs(total_iter) = 0;    tol_sigmas(total_iter) = 0;    % mean Value    mean_bs(total_iter - op.burnIn) = 0;    mean_thetas(total_iter - op.burnIn) = 0;    mean_sigmas(total_iter - op.burnIn) = 0;    % tracking    err_sample(1) = MSE(X_wu, op.x);    err_sample(total_iter) = 0;    %%    logPiTraceX(total_iter)=0;  % to monitor convergence    gX(total_iter)=0;           % to monitor how the regularisation function evolves    logPiTraceX(1)=logPi(X_wu,thetas(1), bs(1), sigmas(1));    X = X_wu;    proxGX = proxG(X,lamb,thetas(1));    % Hyper parameters    true_psf = psf_laplace(op.psf_size, op.b);    app_psf = psf_laplace(op.psf_size, bs(1));    err_psf(1) = l2(app_psf, true_psf);        %% Constant to scale the step size    c_theta =0.01;    c_b = 100;    c_sigma2 =10000;    fprintf('\nRunning SAPG algorithm...  \n');    for ii = 2:total_iter        %% Sample from posterior with MYULA        g_b(1) = 0;        g_b(warm_sample) = 0;        g_s(1) = 0;        g_s(warm_sample) = 0;        g_t(1) = 0;        g_t(warm_sample) = 0;        for jj = 1:1            Z = randn(size(X));            X =   X + gam * (proxGX-X)/lamb - gam*gradF(X, bs(ii-1), sigmas(ii-1)) + sqrt(2*gam)*Z;            X = abs(X);            proxGX = proxG(X,lamb,thetas(ii-1));            g_b(jj) = gradF_b(X, bs(ii-1), sigmas(ii-1));            g_s(jj) = gradF_sigma(X, bs(ii-1), sigmas(ii-1));            g_t(jj) = (dimX/thetas(ii-1)- g(X));  %*exp(etas(ii-1));        end        G_b = mean(g_b);        G_s = mean(g_s);        G_t = mean(g_t);        %% Update theta          thetaii = thetas(ii-1) + c_theta* delta(ii)*G_t;          thetas(ii) = min(max(thetaii,min_theta),max_theta);        %% update b          if op.fix_b              bii = op.b;          else              bii = bs(ii-1) -  c_b*delta(ii) * G_b;          end          bs(ii) = min(max(bii ,min_b),max_b);        %% update sigma          if op.fix_sigma              sigmaii = op.sigma^2;          else              sigmaii = sigmas(ii-1) + c_sigma2*delta(ii) * G_s;          end          sigmas(ii) = min(max(sigmaii,min_sigma),max_sigma);        %% tracking            err_sample(ii) = MSE(X, op.x);            app_psf = psf_laplace(op.psf_size, bs(ii));            err_psf(ii) = l2(app_psf, true_psf);        %% Save current state to monitor convergence            logPiTraceX(ii) = logPi(X,thetas(ii-1), bs(ii-1), sigmas(ii-1));            gX(ii-1) = g(X);        %% Display Progress            if mod(ii, round(total_iter / 100)) == 0                fprintf('\b\b\b\b\t%2d%%', round(ii / (total_iter) * 100));            end        %% Check stop criteria. If relative error is smaller than op.stopTol stop        % tol for theta          relErrTh1=abs(mean(thetas(op.burnIn:ii))-mean(thetas(op.burnIn:ii-1)))/mean(thetas(op.burnIn:ii-1));          tol_thetas(ii) = relErrTh1;        % tol for b          relErrTh2=abs(mean(bs(op.burnIn:ii))-mean(bs(op.burnIn:ii-1)))/mean(bs(op.burnIn:ii-1));          tol_bs(ii) = relErrTh2;        % tol for sigma        relErrTh4=abs(mean(sigmas(op.burnIn:ii))-mean(sigmas(op.burnIn:ii-1)))/mean(sigmas(op.burnIn:ii-1));        tol_sigmas(ii) = relErrTh4;        if ii > op.burnIn            %% mean of theta            mean_thetas(ii- op.burnIn)  = mean(thetas(op.burnIn:ii));            %% mean b            mean_bs(ii - op.burnIn) = mean(bs(op.burnIn:ii));            %% mean sigma            mean_sigmas(ii - op.burnIn) = mean(sigmas(op.burnIn:ii));        end    end    %% Save logs in results struct      results.execTimeFindTheta=toc;      last_samp=ii;results.last_samp=last_samp;      results.logPiTraceX=logPiTraceX(1:last_samp);      results.gXTrace=gX(1:last_samp);    %% theta      theta_EB = mean(thetas(op.burnIn:last_samp));      results.mean_theta= theta_EB;      results.last_theta= thetas(last_samp);      results.thetas=thetas(1:last_samp);      results.mean_thetas = mean_thetas;      results.tol_thetas = tol_thetas;     results.c_theta = c_theta;    %% b      b_EB = mean(bs(op.burnIn:last_samp));      results.mean_b= b_EB;      b_last = bs(last_samp);      results.last_b= b_last;      results.bs = bs(1:last_samp);      results.mean_bs = mean_bs;      results.tol_bs = tol_bs;      results.c_b = c_b;    %% sigma      sigma_EB = mean(sigmas(op.burnIn:last_samp));      results.sigma_EB= sigma_EB;      sigma_last = sigmas(last_samp);      results.last_sigma= sigma_last;      results.sigmas=sigmas(1:last_samp);      results.mean_sigmas = mean_sigmas;      results.tol_sigma = tol_sigmas;      results.c_sigma2 = c_sigma2;    %% final results      results.X_sample = X;      results.X_warm = X_wu;      results.err_warm = err_warm;      results.err_sample = err_sample;      results.err_psf = err_psf;      results.options=op;end

⛳️ 运行结果

🔗 参考文献

[1] 王永东,袁凯鑫,曹祥红.基于CHHO优化LSTM的火场环境预测模型研究[J].电子测量技术, 2023(020):046.

[2] 王雨虹,王淑月,王志中,等.基于改进蝗虫算法优化长短时记忆神经网络的多参数瓦斯浓度预测模型研究[J].传感技术学报, 2021, 34(9):8.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 34
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值