【发车优化】基于遗传算法实现兰州地铁乘客到站时刻和离站时刻换乘站处优化时刻附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

1. 概述

兰州地铁作为城市交通的重要组成部分,其运营效率直接影响着乘客出行体验和城市交通整体运行状况。地铁乘客换乘环节是影响出行效率的关键因素之一,合理优化乘客到站时刻和离站时刻,能够有效缩短乘客等待时间,提升乘客出行效率。本文将探讨基于遗传算法实现兰州地铁乘客换乘站处优化到站时刻和离站时刻的方法,以期为地铁运营调度提供优化方案。

2. 问题描述

在兰州地铁网络中,乘客在换乘站处需要进行换乘,即从一条地铁线路换乘至另一条地铁线路。乘客的到站时刻和离站时刻对于其换乘效率有着至关重要的影响。理想情况下,乘客到达换乘站后,能够立即换乘下一条地铁线路,无需等待。然而,由于地铁运行时间表、乘客流量等因素的影响,乘客往往需要在换乘站处等待一定时间才能换乘下一条地铁线路。

3. 优化目标

本文的优化目标是:

  • 最小化乘客的平均等待时间: 降低乘客在换乘站处的平均等待时间,提升换乘效率。

  • 最大化地铁线路的运行效率: 通过优化乘客到站时刻和离站时刻,提高地铁线路的整体运行效率。

  • 平衡乘客等待时间和地铁运行效率: 既要考虑乘客的出行体验,也要保证地铁线路的正常运行。

4. 基于遗传算法的优化方法

遗传算法是一种启发式搜索算法,其灵感来自于生物进化论,通过模拟生物进化过程,不断优化解空间中的最优解。本文将采用遗传算法来优化兰州地铁乘客的到站时刻和离站时刻。

4.1 遗传算法流程

遗传算法的优化流程如下:

  • 初始化种群: 随机生成一定数量的初始解,每个解代表一种乘客到站时刻和离站时刻的组合方案。

  • 适应度评估: 根据预设的适应度函数,评估每个解的优劣程度。适应度函数通常根据优化目标进行设计,例如最小化乘客平均等待时间、最大化地铁线路运行效率等。

  • 选择: 选择适应度高的解进行繁殖,并淘汰适应度低的解。

  • 交叉: 将选择的解进行交叉操作,产生新的解。

  • 变异: 对新解进行变异操作,引入随机性,避免陷入局部最优解。

  • 循环迭代: 重复以上步骤,直到达到预设的迭代次数或满足终止条件。

4.2 适应度函数的设计

适应度函数是遗传算法的核心,它用于评估每个解的优劣程度。本文设计的适应度函数包括:

  • 乘客平均等待时间: 该指标反映了乘客在换乘站处等待时间的平均值,越小越好。

  • 地铁线路运行效率: 该指标反映了地铁线路的整体运行效率,例如最大化地铁列车利用率、最小化列车空载率等,越大越好。

  • 乘客满意度: 该指标反映了乘客对地铁换乘的满意程度,例如乘客的换乘时间、换乘舒适度等,越高越好。

4.3 遗传算法参数设置

在遗传算法的实现过程中,需要设置一些参数,例如种群规模、交叉概率、变异概率等。这些参数的设置会影响算法的收敛速度和优化结果,需要根据实际情况进行调整。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值