✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 概述
兰州地铁作为城市交通的重要组成部分,其运营效率直接影响着乘客出行体验和城市交通整体运行状况。地铁乘客换乘环节是影响出行效率的关键因素之一,合理优化乘客到站时刻和离站时刻,能够有效缩短乘客等待时间,提升乘客出行效率。本文将探讨基于遗传算法实现兰州地铁乘客换乘站处优化到站时刻和离站时刻的方法,以期为地铁运营调度提供优化方案。
2. 问题描述
在兰州地铁网络中,乘客在换乘站处需要进行换乘,即从一条地铁线路换乘至另一条地铁线路。乘客的到站时刻和离站时刻对于其换乘效率有着至关重要的影响。理想情况下,乘客到达换乘站后,能够立即换乘下一条地铁线路,无需等待。然而,由于地铁运行时间表、乘客流量等因素的影响,乘客往往需要在换乘站处等待一定时间才能换乘下一条地铁线路。
3. 优化目标
本文的优化目标是:
-
最小化乘客的平均等待时间: 降低乘客在换乘站处的平均等待时间,提升换乘效率。
-
最大化地铁线路的运行效率: 通过优化乘客到站时刻和离站时刻,提高地铁线路的整体运行效率。
-
平衡乘客等待时间和地铁运行效率: 既要考虑乘客的出行体验,也要保证地铁线路的正常运行。
4. 基于遗传算法的优化方法
遗传算法是一种启发式搜索算法,其灵感来自于生物进化论,通过模拟生物进化过程,不断优化解空间中的最优解。本文将采用遗传算法来优化兰州地铁乘客的到站时刻和离站时刻。
4.1 遗传算法流程
遗传算法的优化流程如下:
-
初始化种群: 随机生成一定数量的初始解,每个解代表一种乘客到站时刻和离站时刻的组合方案。
-
适应度评估: 根据预设的适应度函数,评估每个解的优劣程度。适应度函数通常根据优化目标进行设计,例如最小化乘客平均等待时间、最大化地铁线路运行效率等。
-
选择: 选择适应度高的解进行繁殖,并淘汰适应度低的解。
-
交叉: 将选择的解进行交叉操作,产生新的解。
-
变异: 对新解进行变异操作,引入随机性,避免陷入局部最优解。
-
循环迭代: 重复以上步骤,直到达到预设的迭代次数或满足终止条件。
4.2 适应度函数的设计
适应度函数是遗传算法的核心,它用于评估每个解的优劣程度。本文设计的适应度函数包括:
-
乘客平均等待时间: 该指标反映了乘客在换乘站处等待时间的平均值,越小越好。
-
地铁线路运行效率: 该指标反映了地铁线路的整体运行效率,例如最大化地铁列车利用率、最小化列车空载率等,越大越好。
-
乘客满意度: 该指标反映了乘客对地铁换乘的满意程度,例如乘客的换乘时间、换乘舒适度等,越高越好。
4.3 遗传算法参数设置
在遗传算法的实现过程中,需要设置一些参数,例如种群规模、交叉概率、变异概率等。这些参数的设置会影响算法的收敛速度和优化结果,需要根据实际情况进行调整。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类