【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数字化浪潮中,数据量呈爆发式增长,对计算能力和效率的要求也水涨船高。传统的云计算模式,就像是一位住在远方城堡里的 “大管家”,所有的数据处理和存储任务都集中在远离用户的数据中心。这种模式在面对一些对时延要求极高的应用时,便显得力不从心。比如,在远程医疗手术中,医生需要实时根据患者的各项数据做出精准操作,如果数据传输到遥远的云端处理后再返回,那一点点延迟都可能影响手术的成败;又比如自动驾驶场景,车辆需要瞬间对周围环境变化做出反应,云计算的高延迟根本无法满足这样的实时性需求 。

为了解决这些问题,边缘计算应运而生,它更像是一位 “贴心的邻居管家”。边缘计算将计算资源部署在更靠近用户的网络边缘,比如基站、路由器等地方,让数据可以在离源头更近的地方得到处理,大大降低了延迟,提升了用户体验。不过,固定的边缘计算节点也有自己的 “短板”。它们的覆盖范围有限,就像一个管家只能照顾好自己周围的一片区域;计算能力也有限,面对突然增加的大量任务可能就会 “手忙脚乱”,难以应对动态变化的用户需求和突发事件。

这时,无人机作为一种新兴的技术力量登上了舞台。无人机,这个灵活的 “空中小助手”,有着诸多独特优势。它的机动性和灵活性超强,就像一个随时待命的超级飞侠,可以快速部署到任何需要的区域,为用户提供灵活的计算和通信服务。它还具备可定制化的载荷能力,能够搭载各种计算和通信设备,满足不同的应用需求,就像一个可以根据任务随时换装的超级英雄。而且,与部署固定边缘计算节点相比,无人机部署的成本相对较低,性价比很高。

当无人机与边缘计算相遇,便开启了一场 “梦幻联动”,形成了无人机辅助边缘计算网络。在这个网络中,无人机化身为移动边缘计算服务器,为用户提供动态的计算和通信服务,大大增强了边缘计算网络的覆盖范围和灵活性。在灾害救援场景中,地震、洪水等灾害往往会破坏地面的通信和计算设施,导致救援工作面临极大困难。此时,无人机可以快速抵达受灾区域,利用自身搭载的计算和通信设备,为救援人员和受困群众搭建起临时的通信桥梁,提供必要的计算支持,帮助救援人员实时获取灾区信息,制定救援方案 。在大型活动中,比如一场热闹非凡的演唱会或者体育赛事,大量观众同时使用手机等设备,对网络和计算资源的需求会瞬间激增。无人机可以根据现场的实时需求,动态地调整计算资源,保障活动现场的网络畅通,满足用户快速分享精彩瞬间、查询信息等需求 。

多无人机路径规划:难题大揭秘

在多无人机辅助边缘计算网络中,路径规划就像是一场复杂的 “空中棋局”,每一步决策都至关重要,而这其中也面临着诸多棘手的挑战 。

高维状态空间的处理就是第一个 “拦路虎”。无人机的位置、速度、电量,以及用户需求、信道状态等众多因素,共同构成了一个错综复杂的高维状态空间。这就好比一个巨大的迷宫,传统的优化算法在这个迷宫中常常会迷失方向,难以有效处理如此复杂的信息 。以遗传算法为例,它在面对小规模、静态环境下的路径规划时,就像是一位经验丰富的导航员,能够轻松找到出路。但当状态空间维度增加,问题规模扩大,它就如同陷入了一团乱麻,计算复杂度急剧上升,求解时间大幅增加,根本无法满足实时性的要求 。

动态环境带来的挑战也不容小觑。在现实世界中,用户需求随时可能发生变化,就像孩子多变的喜好一样难以捉摸;信道状态会受到天气、地形等因素的影响,时好时坏;天气状况更是变幻莫测,刚才还是晴空万里,转眼间可能就乌云密布。这些动态变化要求无人机必须具备敏锐的感知能力和快速的反应能力,能够根据环境的改变实时调整飞行路径。想象一下,在一场紧急救援任务中,原本规划好的路径突然因为突发的山体滑坡而被阻断,无人机如果不能及时改变路线,就可能延误救援时机,造成严重后果 。

多目标优化也是路径规划中必须面对的难题。我们既希望无人机能够最小化延迟,快速响应用户的需求,就像快递员尽快将包裹送到客户手中;又要最大化吞吐量,提高数据处理和传输的效率,如同繁忙港口高效装卸货物;同时还要最小化能量消耗,延长无人机的续航时间,就像精打细算的旅行者合理规划行程以节省体力;并且要满足严格的服务质量(QoS)需求,确保为用户提供稳定可靠的服务。然而,这些目标之间往往存在着冲突和矛盾,就像鱼和熊掌难以兼得,如何在它们之间找到最佳的平衡点,是研究人员需要攻克的关键问题 。

无人机间的协作同样至关重要。多架无人机就像一个团队中的成员,需要协同工作,紧密配合,才能最大化网络性能。但在实际飞行中,它们可能会面临冲突和干扰的问题。比如,在一个大型活动现场,多架无人机同时为观众提供网络服务和计算支持,如果它们的飞行路径规划不合理,就可能出现相互碰撞的危险,或者在通信过程中产生干扰,导致服务质量下降。因此,如何建立有效的协作机制,让无人机之间能够相互协调、相互配合,是实现高效路径规划的重要保障 。

安全约束是绝对不能忽视的底线。无人机的飞行路径必须严格满足安全要求,避开禁飞区,就像汽车要遵守交通规则,不能驶入禁止通行的区域;保持与其他无人机和障碍物的安全距离,避免发生碰撞事故,保障飞行安全。在一些重要的军事区域或者人口密集的城市中心,都设有禁飞区,如果无人机不小心闯入,可能会引发严重的安全问题 。

深度强化学习:破局的 “秘密武器”

(一)深度强化学习原理剖析

深度强化学习,作为人工智能领域的一颗璀璨明星,巧妙地融合了深度学习的强大感知能力与强化学习的卓越决策能力,为解决复杂问题开辟了新的道路 。

深度学习,就像是一位敏锐的 “感知大师”,通过构建多层神经网络,能够自动从大量数据中提取复杂的特征。以图像识别为例,卷积神经网络(CNN)可以层层剖析图像,从简单的边缘、纹理特征,到复杂的物体结构特征,最终准确识别出图像中的物体。它在处理高维数据,如图片、视频、语音等方面,展现出了非凡的能力,能够让计算机像人类一样 “看懂” 和 “听懂” 世界 。

强化学习则更像是一位不断探索和学习的 “冒险者”。它的核心是智能体(Agent)与环境进行交互,智能体在环境中采取行动,环境根据智能体的行动给予相应的奖励或惩罚信号。智能体的目标就是通过不断地尝试和学习,找到一种最优策略,使得在长期的交互过程中获得的累积奖励最大化。比如在玩游戏时,智能体(游戏角色)通过不断尝试不同的操作(前进、跳跃、攻击等),根据每次操作后游戏给出的得分(奖励)或失败提示(惩罚),逐渐学会如何更好地玩游戏,以获得更高的分数 。

当深度学习与强化学习强强联手,深度强化学习便应运而生。在深度强化学习中,深度学习负责对环境的状态进行感知和理解,将高维的原始数据转化为低维的特征表示,就像为强化学习提供了一双 “智慧的眼睛”,让它能够看清周围的环境;而强化学习则基于这些特征表示,通过与环境的交互学习最优策略,做出决策,成为了 “果断的指挥官” 。

具体来说,深度强化学习将路径规划问题建模为马尔可夫决策过程(MDP)。在这个过程中,状态(State)表示无人机当前所处的状况,包括位置、速度、电量等信息;动作(Action)是无人机可以采取的行动,如向某个方向飞行、调整飞行高度等;奖励(Reward)是环境根据无人机的动作给予的反馈,例如成功为用户提供服务获得正奖励,电量过低或发生碰撞则获得负奖励 。智能体(无人机)根据当前的状态,利用深度学习模型(如深度神经网络)来预测不同动作的价值,然后选择价值最大的动作执行。在执行动作后,智能体观察新的状态和获得的奖励,并利用这些信息来更新深度学习模型的参数,以提高对未来动作价值的预测准确性。通过这样不断地循环迭代,智能体逐渐学习到最优的路径规划策略,就像一个不断积累经验的探险家,在复杂的环境中找到最适合自己的前行路线 。

(二)在路径规划中的独特优势

与传统的路径规划算法相比,深度强化学习在多无人机辅助边缘计算网络的路径规划中具有诸多独特优势 。

首先,深度强化学习对动态环境有着极强的适应能力。在传统算法中,往往需要预先知道环境的全部信息,并且假设环境是静态不变的。但在现实中,多无人机辅助边缘计算网络的环境充满了动态变化,如用户需求的突然改变、信道状态的实时波动、天气和地形等因素的影响。深度强化学习的智能体可以在与环境的实时交互中,不断感知这些变化,并根据新的信息及时调整路径规划策略。就像一个经验丰富的司机,在行驶过程中能够根据实时路况(如交通拥堵、道路施工等)灵活改变路线,而不是按照预先设定好的固定路线行驶 。

其次,深度强化学习能够从长远的角度考虑问题,追求长期收益的最大化。传统算法在规划路径时,可能只关注当前的局部最优解,比如只考虑如何尽快到达下一个目标点,而忽略了对整个任务过程中能量消耗、服务质量等因素的综合考量。深度强化学习通过累积奖励的方式,让智能体在决策时不仅考虑当前动作的即时奖励,还会考虑到该动作对未来状态和奖励的影响。例如,无人机在选择飞行路径时,会综合考虑当前为用户提供服务所获得的奖励,以及飞行过程中的能量消耗对后续任务执行能力的影响,从而选择一条既能满足当前服务需求,又能保证自身能量合理利用,以实现长期服务效果最优的路径 。

再者,深度强化学习在处理高维复杂问题时表现出色。如前文所述,多无人机路径规划涉及到高维状态空间,包含众多影响因素。传统算法在面对这样复杂的状态空间时,计算复杂度会呈指数级增长,导致计算效率低下,甚至难以求解。深度强化学习借助深度学习强大的特征提取能力,能够有效地处理这些高维数据,将复杂的状态信息转化为有意义的特征表示,从而降低问题的复杂度,使得智能体能够在复杂环境中快速做出决策 。例如,在处理包含无人机位置、速度、电量、用户需求、信道状态等多维信息的状态空间时,深度神经网络可以自动学习这些信息之间的内在关系,提取出关键特征,帮助智能体更好地理解环境,进而做出更合理的路径规划决策 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值