✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着移动通信技术的高速发展,对无线资源的需求日益增长。为了提高频谱利用率和系统容量,非正交多址接入 (NOMA) 和正交频分多址 (OFDMA) 技术应运而生。NOMA 允许多个用户在同一时隙和同一频段传输数据,而 OFDMA 则将频谱划分为多个正交子载波,每个用户分配一个或多个子载波进行传输。
本文将对 NOMA 和 OFDMA 技术进行性能分析,通过仿真比较两种技术的误码率 (BER) 性能,并探讨不同调制方式 (4PSK, 8PSK, BPSK) 对系统性能的影响。
系统模型
考虑一个下行链路系统,基站 (BS) 向多个用户 (UE) 发送数据。
-
**NOMA 系统:**BS 将多个用户的数据叠加在一起,并使用功率分配方案将不同的功率分配给不同的用户。用户在接收端使用串行干扰消除 (SIC) 技术来解码自己的数据。
-
**OFDMA 系统:**BS 将频谱划分为多个正交子载波,每个用户分配一个或多个子载波进行传输。用户在接收端仅接收分配给自己的子载波上的数据。
仿真参数
-
**调制方式:**4PSK, 8PSK, BPSK
-
**信道模型:**瑞利衰落信道
-
**噪声模型:**加性高斯白噪声 (AWGN)
-
**功率分配方案:**NOMA 系统中采用功率分配方案,将更高的功率分配给信道条件较好的用户,而将较低的功率分配给信道条件较差的用户。
-
**用户数量:**4 个用户
-
**仿真范围:**信噪比 (SNR) 从 0 dB 到 20 dB
结论
本文通过仿真比较了 NOMA 和 OFDMA 的 BER 性能,并分析了不同调制方式对系统性能的影响。仿真结果表明:
-
NOMA 在低 SNR 下的 BER 性能优于 OFDMA,但在高 SNR 下两者性能差距逐渐缩小。
-
不同调制方式对系统性能有明显影响,BPSK 适用于低 SNR 环境,而 8PSK 适用于高 SNR 环境。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类