【负荷预测】基于混沌博弈优化算法CGO优化回声神经网络ESN实现负荷多输入单输出预测附Matlab代码

   ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

摘要:负荷预测是电力系统运行与控制的关键环节,准确的负荷预测能够有效提高电力系统安全性和经济性。本文提出了一种基于混沌博弈优化算法CGO优化回声神经网络ESN的负荷多输入单输出预测方法。该方法利用CGO算法对ESN的网络参数进行优化,提高了ESN的预测精度。通过对实际电力负荷数据的实验验证,该方法的预测精度明显优于传统的负荷预测方法,具有较好的应用价值。

引言

随着电力系统规模的不断扩大和复杂程度的不断提高,对负荷预测精度的要求也越来越高。传统的负荷预测方法主要包括统计方法、灰色预测模型、神经网络等,但这些方法在处理复杂电力负荷数据时往往存在预测精度不足、泛化能力差等问题。近年来,回声状态网络 (ESN) 作为一种新型的神经网络模型,以其结构简单、训练速度快、预测精度高等优势,在负荷预测领域获得了广泛关注。然而,ESN的性能很大程度上取决于其网络参数的设置,而传统的手工参数调整方法效率较低,难以找到最优参数组合。

混沌博弈优化算法 (CGO) 是一种新兴的全局优化算法,其将混沌系统和博弈论思想结合起来,具有搜索能力强、收敛速度快等特点。本文提出将CGO算法应用于ESN网络参数优化,旨在通过CGO算法自动寻优来提高ESN模型的负荷预测精度。

1. 回声状态网络 (ESN)

ESN是一种递归神经网络,其结构简单,训练过程主要集中在输出层的权重学习,因此训练效率高。ESN的核心思想是利用一个随机生成的储备池 (reservoir) 来存储历史信息,并利用输出层权重矩阵将储备池的信息映射到预测结果。

ESN网络模型主要包括三部分:输入层、储备池和输出层。

  • 输入层:接受外部输入信号。
  • 储备池:由一系列神经元组成,每个神经元都具有非线性激活函数。储备池的连接方式是随机生成的,且每个神经元都具有一个状态,该状态由输入信号和前一时刻的状态决定。
  • 输出层:根据储备池的状态和输出层权重矩阵,产生预测结果。

2. 混沌博弈优化算法 (CGO)

CGO算法是一种新型的全局优化算法,其将混沌系统和博弈论思想结合起来,具有搜索能力强、收敛速度快等特点。CGO算法主要包括以下步骤:

  1. 初始化种群: 初始化一组随机解作为种群。
  2. 混沌映射: 利用混沌映射对种群进行扰动,增加种群的多样性。
  3. 博弈策略: 种群中的个体通过竞争和合作,选择最优解。
  4. 更新种群: 更新种群,并重复步骤2-3,直到达到收敛条件。

3. 基于CGO优化ESN的负荷预测方法

本文提出的基于CGO优化ESN的负荷多输入单输出预测方法主要包括以下步骤:

  1. 数据预处理: 对电力负荷数据进行预处理,包括数据清洗、归一化等。
  2. ESN模型构建: 构建ESN模型,并随机生成储备池参数。
  3. CGO优化: 利用CGO算法对ESN模型的输出层权重进行优化。
  4. 模型训练: 利用训练数据对优化后的ESN模型进行训练。
  5. 负荷预测: 利用训练好的ESN模型对未来的负荷进行预测。

    结论

    本文提出了一种基于混沌博弈优化算法CGO优化回声神经网络ESN的负荷多输入单输出预测方法。该方法利用CGO算法对ESN的网络参数进行优化,提高了ESN的预测精度。通过对实际电力负荷数据的实验验证,该方法的预测精度明显优于传统的负荷预测方法,具有较好的应用价值。

    未来工作展望

    未来工作将继续深入研究CGO算法在ESN参数优化中的应用,并探索更有效的负荷预测方法,例如:

  6. 研究不同类型混沌映射对CGO算法性能的影响。
  7. 将CGO算法与其他优化算法结合,进一步提升负荷预测精度。
  8. 研究ESN模型的鲁棒性和泛化能力,提高其对复杂负荷数据的适应能力。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
根据提供的引用内容,混沌博弈优化算法是一种基于混沌理论和博弈论的优化算法。虽然提供的引用中给出了MATLAB代码,但是我们同样可以使用Python实现算法。以下是一个简的Python实现示例: ```python import numpy as np # 定义目标函数 def obj_func(x): return x[0]**2 + x[1]**2 # 定义混沌映射函数 def chaos_map(x0, a=6): return a * x0 * (1 - x0) # 定义混沌博弈优化算法 def CGO(obj_func, dim=2, max_iter=100, pop_size=50, a=6): # 初始化种群 pop = np.random.rand(pop_size, dim) # 初始化个体最优解和全局最优解 p_best = pop.copy() g_best = p_best[obj_func(p_best).argmin()].copy() # 迭代寻优 for i in range(max_iter): # 计算混沌映射值 x0 = chaos_map(pop[:, 0], a=a) # 计算新的种群 pop_new = np.zeros_like(pop) for j in range(dim): # 计算混沌映射值 x0 = chaos_map(x0, a=a) # 计算新的种群 pop_new[:, j] = (1 - x0) * pop[:, j] + x0 * g_best[j] # 更新个体最优解和全局最优解 p_best_mask = obj_func(pop_new) < obj_func(p_best) p_best[p_best_mask] = pop_new[p_best_mask] g_best_mask = obj_func(p_best) < obj_func(g_best) g_best = p_best[g_best_mask][0].copy() return g_best, obj_func(g_best) # 测试 if __name__ == '__main__': g_best, obj_val = CGO(obj_func) print('最优解:', g_best) print('最优目标函数值:', obj_val) ``` 该示例中,我们首先定义了目标函数`obj_func`,然后定义了混沌映射函数`chaos_map`,最后定义了混沌博弈优化算法`CGO`。在`CGO`函数中,我们首先初始化种群,然后迭代寻优,每次迭代中都会计算混沌映射值,并根据混沌映射值计算新的种群。在更新个体最优解和全局最优解时,我们使用了布尔掩码来筛选出更优的解。最后,我们在`if __name__ == '__main__'`中测试了该算法,并输出了最优解和最优目标函数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值