✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要:瓦斯浓度预测是煤矿安全生产的关键环节,准确的预测结果能够有效预防瓦斯事故,保障矿工生命安全。本文提出了一种基于蝠鲼觅食优化算法(MRFO)优化的宽度学习神经网络(BLS)的瓦斯浓度回归预测模型。首先,介绍了宽度学习神经网络和蝠鲼觅食优化算法的基本原理和特点。然后,将MRFO算法应用于BLS模型的训练,优化BLS模型的结构参数,包括隐层节点数、输入权重和输出权重,以提升模型的预测精度。最后,以某煤矿瓦斯浓度监测数据为实验对象,对模型进行了训练和测试,并与其他预测模型进行了对比。实验结果表明,本文提出的MRFO-BLS模型在预测精度方面明显优于传统方法,具有良好的泛化能力和鲁棒性,为煤矿瓦斯浓度预测提供了一种有效的方法。
1. 引言
瓦斯是煤矿开采过程中面临的主要安全隐患之一,其突发事件是煤矿事故的主要诱因。瓦斯浓度预测是预防瓦斯事故的重要手段,能够有效预警瓦斯浓度异常变化,为矿井通风和安全生产提供决策依据。近年来,随着人工智能技术的发展,神经网络模型在瓦斯浓度预测领域得到了广泛应用。
传统神经网络模型存在训练时间长、易陷入局部最优等问题,限制了其在瓦斯浓度预测中的应用。近年来,宽度学习神经网络(BLS)以其快速训练速度、良好的泛化能力和鲁棒性等优点,在模式识别、时间序列预测等领域展现出了巨大的潜力。然而,BLS模型的结构参数,例如隐层节点数、输入权重和输出权重,对模型的预测精度影响较大,需要进行有效的优化。
蝠鲼觅食优化算法(MRFO)是一种新型的群体智能优化算法,其灵感来源于蝠鲼的觅食行为。MRFO算法具有较强的全局搜索能力和局部搜索能力,能够有效解决传统优化算法易陷入局部最优的问题。
本文将MRFO算法应用于BLS模型的优化,提出了基于MRFO优化的BLS模型,用于煤矿瓦斯浓度回归预测。该模型不仅能够利用MRFO算法有效优化BLS模型的结构参数,提升模型的预测精度,而且能够避免传统神经网络模型训练时间长、易陷入局部最优等问题。
2. 相关研究
近年来,许多学者致力于研究基于神经网络的瓦斯浓度预测模型。例如,文献[1]提出了一种基于BP神经网络的瓦斯浓度预测模型,但该模型存在训练时间长、易陷入局部最优等问题。文献[2]提出了基于支持向量机(SVM)的瓦斯浓度预测模型,但SVM模型的参数选择比较复杂。文献[3]提出了基于随机森林的瓦斯浓度预测模型,该模型具有较好的鲁棒性,但其预测精度仍有待提高。
BLS模型作为一种新型的神经网络模型,近年来在模式识别、时间序列预测等领域得到了广泛应用。文献[4]提出了基于BLS模型的股票价格预测模型,该模型取得了较好的预测效果。文献[5]提出了基于BLS模型的电力负荷预测模型,该模型具有较高的预测精度。
3. 宽度学习神经网络
宽度学习神经网络(BLS)是一种新型的浅层神经网络模型,其结构简单,训练速度快,具有良好的泛化能力和鲁棒性。BLS模型由输入层、增强层和输出层组成,其核心思想是通过多个增强节点的线性组合来逼近目标函数。
3.1 增强节点
BLS模型的增强节点是其核心组成部分,其作用是将输入信号进行非线性变换。增强节点的输出可以表示为:
y_i = f(w_i * x + b_i)
其中,x为输入向量,w_i为输入权重向量,b_i为偏置项,f(·)为激活函数。
3.2 输出层
BLS模型的输出层将增强节点的输出进行线性组合,得到最终的预测结果。输出层的输出可以表示为:
y = W_o * Y_e
其中,Y_e为增强节点的输出矩阵,W_o为输出权重矩阵。
3.3 训练过程
BLS模型的训练过程主要包括以下步骤:
- 随机初始化输入权重和偏置项。
- 计算增强节点的输出。
- 利用最小二乘法计算输出权重。
由于BLS模型的训练过程只需计算一次输出权重,因此其训练速度比传统神经网络模型快得多。
4. 蝠鲼觅食优化算法
蝠鲼觅食优化算法(MRFO)是一种新型的群体智能优化算法,其灵感来源于蝠鲼的觅食行为。MRFO算法具有较强的全局搜索能力和局部搜索能力,能够有效解决传统优化算法易陷入局部最优的问题。
4.1 算法原理
MRFO算法模拟了蝠鲼在海洋中觅食的行为。蝠鲼的觅食方式主要包括两种:
- **觅食搜索模式:**蝠鲼以螺旋形的方式在海水中搜索食物。
- **循环觅食模式:**蝠鲼以群体的形式,在特定的区域内循环觅食。
MRFO算法根据蝠鲼的觅食方式,设计了两种更新机制:
- **觅食搜索机制:**该机制用于探索新的搜索空间,提高算法的全局搜索能力。
- **循环觅食机制:**该机制用于在局部区域内进行搜索,提高算法的局部搜索能力。
4.2 算法步骤
MRFO算法的步骤如下:
- 初始化蝠鲼种群。
- 计算适应度值。
- 执行觅食搜索机制。
- 执行循环觅食机制。
- 更新蝠鲼种群。
- 判断是否满足终止条件,如果满足则退出算法,否则返回步骤2。
5. 基于MRFO优化的BLS模型
本文提出了一种基于MRFO优化的BLS模型,用于煤矿瓦斯浓度回归预测。该模型将MRFO算法应用于BLS模型的训练,优化BLS模型的结构参数,包括隐层节点数、输入权重和输出权重,以提升模型的预测精度。
5.1 优化目标
模型的优化目标是找到一组最优的结构参数,使得BLS模型的预测误差最小。
5.2 优化过程
MRFO算法的优化过程如下:
- 将BLS模型的结构参数作为优化变量,初始化蝠鲼种群。
- 利用MRFO算法更新蝠鲼种群,找到一组最优的结构参数。
- 利用找到的最佳结构参数训练BLS模型。
6. 实验结果及分析
本文以某煤矿瓦斯浓度监测数据为实验对象,对模型进行了训练和测试,并与其他预测模型进行了对比。实验结果表明,本文提出的MRFO-BLS模型在预测精度方面明显优于传统方法,具有良好的泛化能力和鲁棒性。
. 结论
本文提出了一种基于MRFO优化的BLS模型,用于煤矿瓦斯浓度回归预测。该模型不仅能够利用MRFO算法有效优化BLS模型的结构参数,提升模型的预测精度,而且能够避免传统神经网络模型训练时间长、易陷入局部最优等问题。实验结果表明,本文提出的MRFO-BLS模型在预测精度方面明显优于传统方法,具有良好的泛化能力和鲁棒性,为煤矿瓦斯浓度预测提供了一种有效的方法。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类