【无人机三维路径规划】基于Dstar、B样条曲线实现复杂城市地型无人机路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

1. 概述

无人机在城市环境中的应用日益广泛,例如物流配送、空中巡检、灾害救援等。然而,城市环境复杂多变,建筑物林立,道路拥挤,给无人机路径规划带来了巨大的挑战。传统的二维路径规划算法难以应对城市环境中复杂的三维地形,无法有效地规划出安全、高效的路径。

本文提出了一种基于D算法和B样条曲线的三维路径规划方法,能够有效地解决复杂城市地型无人机路径规划问题。该方法首先利用D算法在三维环境中搜索出最优路径,然后利用B样条曲线对路径进行平滑处理,生成一条安全、平滑、高效的无人机飞行路径。

2. 问题描述

无人机三维路径规划问题可以描述为:给定一个三维城市环境模型,包含建筑物、道路、障碍物等,以及无人机的起点和终点,求解一条满足以下约束条件的无人机飞行路径:

  • 安全性:路径不与任何障碍物发生碰撞。

  • 平滑性:路径连续且平滑,避免急转弯和剧烈变化。

  • 高效性:路径长度尽可能短,飞行时间尽可能短。

3. 方法介绍

3.1 D*算法

D算法是一种动态规划算法,适用于在动态环境中进行路径规划。其核心思想是通过不断更新搜索图中的节点代价,找到从起点到终点的最优路径。D算法的主要优点包括:

  • 动态适应性强: 能够快速响应环境变化,例如障碍物移动或新增障碍物。

  • 效率高: 能够有效地搜索最优路径,避免重复搜索。

3.2 B样条曲线

B样条曲线是一种参数曲线,可以用来表示平滑的曲线。B样条曲线的优点包括:

  • 平滑性好: 能够生成平滑且连续的曲线。

  • 控制点灵活: 可以通过调整控制点来改变曲线形状。

  • 数学性质良好: 易于进行数学运算,方便进行路径规划。

3.3 三维路径规划方法

本文提出的三维路径规划方法主要包括以下步骤:

  1. 环境建模: 利用三维点云数据或其他方式构建城市环境模型,并将其转换为三维栅格地图。

  2. D*算法路径搜索: 利用D*算法在三维栅格地图中搜索出从起点到终点的最优路径。

  3. B样条曲线拟合: 利用B样条曲线对D*算法搜索出的路径进行平滑处理,生成一条安全、平滑、高效的飞行路径。

  4. 路径优化: 根据飞行时间、飞行距离等约束条件对路径进行优化,以提高路径效率。

4. Matlab代码实现

 

rder);

% 路径优化
% ...

% 可视化结果
figure;
hold on;
% 显示环境模型
plot3(obstacles(:, 1), obstacles(:, 2), obstacles(:, 3), 'r.');
% 显示路径
plot3(curve(:, 1), curve(:, 2), curve(:, 3), 'g-');
% 显示起点和终点
plot3(start(1), start(2), start(3), 'bo');
plot3(goal(1), goal(2), goal(3), 'bo');
xlabel('X');
ylabel('Y');
zlabel('Z');
title('无人机三维路径规划');
hold off;

% D*算法函数
function [path, cost] = Dstar(map, start, goal)
% ...
end
% B样条曲线函数
function curve = bspline(controlPoints, knots, order)
% ...
end

5. 总结

本文提出了一种基于D算法和B样条曲线的无人机三维路径规划方法,能够有效地解决复杂城市地型无人机路径规划问题。该方法利用D算法搜索出最优路径,利用B样条曲线对路径进行平滑处理,最终生成一条安全、平滑、高效的无人机飞行路径。Matlab代码示例展示了该方法的具体实现过程,并提供了D*算法和B样条曲线拟合的函数。

该方法可以应用于无人机物流配送、空中巡检、灾害救援等领域,为无人机在城市环境中的安全、高效飞行提供有效的解决方案。

6. 未来工作

  • 探索更有效的环境建模方法,提高路径规划的精度和效率。

  • 研究考虑风力、气流等因素的影响,生成更加精准的路径规划结果。

⛳️ 运行结果

🔗 参考文献

[1] 苏毅,曾坚.从尺规到NURBS——用于辅助设计曲面型建筑的几何工具的沿革[J].建筑师, 2007, 000(005):18-25.DOI:CNKI:SUN:JZSS.0.2007-05-005.

[2] 甘旭升,张宏宏,温祥西,等.一种城市空间无人机安全航路规划方法:CN202110064775.5[P].CN112880684A[2024-09-09].

[3] 刘国荣.基于图像的车道线检测与跟踪算法研究[D].湖南大学[2024-09-09].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值