【路径规划】基于遗传算法GA实现移植最短距离路径规划附Matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

路径规划问题是人工智能和机器人学领域一个核心且具有挑战性的课题。其目标是在给定环境中,寻找一条从起点到终点的最优路径,该路径通常需要满足一定的约束条件,例如距离最短、时间最短、成本最低等等。本文将重点讨论基于遗传算法 (Genetic Algorithm, GA) 的移植最短距离路径规划方法,并提供相应的Matlab代码实现。

传统路径规划算法,例如A*算法、Dijkstra算法等,在处理静态环境下的路径规划问题时表现出色。然而,当环境复杂度较高,或者需要考虑动态因素(例如障碍物移动)时,这些算法的效率和鲁棒性会受到限制。遗传算法作为一种全局优化算法,具有并行搜索能力和较强的全局寻优能力,因此在处理复杂路径规划问题时展现出显著的优势。其通过模拟自然选择和遗传机制,不断迭代进化,最终收敛到最优解或近似最优解。

本文提出的基于遗传算法的移植最短距离路径规划方法,特别适用于在具有障碍物的环境中寻找从起点到终点的最短路径,并且可以轻松扩展到考虑更复杂的约束条件。该方法将路径编码为染色体,每个基因代表路径中的一个节点。适应度函数则定义为路径的长度,目标是找到适应度值最低(即路径长度最短)的染色体。遗传算法的主要步骤如下:

1. 种群初始化: 随机生成一定数量的初始路径,构成初始种群。每个路径由一系列节点构成,代表一条从起点到终点的路径。这些路径需要满足一定的约束条件,例如不能穿过障碍物。 初始化过程可以采用随机生成的方式,也可以结合一些启发式方法,例如采用贪婪算法生成一些初始路径,提高算法收敛速度。

2. 适应度评价: 对种群中的每个个体(路径)计算其适应度值,即路径长度。路径长度的计算可以使用距离公式,例如欧几里得距离或曼哈顿距离。 为了避免路径长度过长导致适应度值过大,可以对适应度值进行反向处理,例如取倒数,使适应度值越小,路径越优。

3. 选择: 根据适应度值,选择一部分适应度较高的个体进入下一代。选择策略有很多种,例如轮盘赌选择、锦标赛选择等。选择策略的选择会影响算法的收敛速度和全局寻优能力。

4. 交叉: 将选择的个体进行两两配对,通过交叉操作产生新的个体。交叉操作可以采用多种方式,例如单点交叉、多点交叉、均匀交叉等。 交叉操作的目的是将优秀个体的基因组合在一起,产生更优秀的个体。

5. 变异: 对新产生的个体进行变异操作,以增加种群的多样性,避免算法陷入局部最优。变异操作可以随机改变个体中的某些基因。变异率需要谨慎选择,过高的变异率会破坏算法的收敛性,过低的变异率则会降低算法的全局寻优能力。

6. 迭代: 重复步骤2-5,直到满足停止条件,例如达到最大迭代次数或适应度值达到预设阈值。

以下是基于上述步骤的Matlab代码示例:

% 参数设置
popSize = 100; % 种群大小
generations = 100; % 最大迭代次数
mutationRate = 0.1; % 变异率
crossoverRate = 0.8; % 交叉率

% 初始化种群 (此处简化,实际需考虑障碍物等约束)
population = randperm(numNodes, numNodes); % 假设numNodes为节点总数


% 适应度函数 (计算路径长度)
fitnessFunction = @(path) sum(distanceMatrix(path(1:end-1),path(2:end))); %distanceMatrix为预先计算好的节点间距离矩阵

% 遗传算法主循环
for generation = 1:generations
% 适应度评价
fitnessValues = fitnessFunction(population);

% 选择
selectedParents = selectParents(population, fitnessValues);

% 交叉
offspring = crossover(selectedParents, crossoverRate);

% 变异
offspring = mutate(offspring, mutationRate);

% 更新种群
population = [selectedParents; offspring];

% ... (其他操作,例如精英保留策略等) ...

end

% 最优路径
[~, bestIndex] = min(fitnessValues);
bestPath = population(bestIndex,:); 

需要注意的是,上述代码只是一个简化的示例,实际应用中需要根据具体的应用场景进行修改和完善,例如添加障碍物约束、考虑不同距离计算方式、优化选择、交叉和变异操作等。 此外,距离矩阵的构建以及对路径合法性的判断也是算法的关键部分,需要仔细设计。

总之,基于遗传算法的移植最短距离路径规划方法为解决复杂环境下的路径规划问题提供了一种有效途径。通过合理的参数设置和算法优化,可以提高算法的效率和鲁棒性,使其在实际应用中发挥更大的作用。 未来研究可以考虑将遗传算法与其他算法结合,例如将遗传算法与局部搜索算法结合,以进一步提高算法的性能。 此外,探索更加高效的编码方式和适应度函数设计也是未来研究的重要方向。

⛳️ 运行结果

🔗 参考文献

[1]彭丽.基于遗传算法的移动机器人路径规划[D].长沙理工大学,2013.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值