回归预测 | MATLAB实现RIME-GPR基于霜冰算法优化高斯过程回归的数据回归预测

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥内容介绍

高斯过程回归 (Gaussian Process Regression, GPR) 作为一种强大的非参数回归方法,因其能够提供预测均值和方差,以及对模型不确定性的良好刻画而备受青睐。然而,GPR 的性能高度依赖于核函数的选择和超参数的优化。不合适的核函数或超参数会导致模型泛化能力下降,预测精度降低。为了解决这一问题,本文探讨了基于霜冰算法 (RIME, Refined Improved Moth Flame Optimization) 优化高斯过程回归 (GPR) 进行数据回归预测的方法,即 RIME-GPR。通过霜冰算法对 GPR 的超参数进行优化,旨在提高模型的预测精度和泛化能力。

高斯过程回归的基本思想是假设待预测函数服从高斯过程先验分布,通过观测数据对该先验分布进行更新,得到后验分布,并利用后验分布进行预测。其核心在于核函数的选择。不同的核函数对应着不同的假设,例如径向基函数 (RBF) 核函数假设数据具有平滑的特性,而线性核函数则假设数据具有线性关系。然而,核函数的选择以及核函数参数 (超参数) 的确定往往需要依靠经验和试错,这使得 GPR 的应用存在一定的局限性。

为了克服 GPR 模型对超参数选择的敏感性,本文采用霜冰算法 (RIME) 进行超参数优化。霜冰算法是一种基于自然现象模拟的元启发式优化算法,它模拟了飞蛾在月光下的趋光行为和霜冰在低温环境下的凝结过程。与其他元启发式算法相比,霜冰算法具有收敛速度快、全局搜索能力强等优点,使其成为优化 GPR 超参数的理想选择。

RIME 算法的核心在于其独特的搜索机制。该算法通过模拟飞蛾的趋光行为进行全局搜索,同时模拟霜冰的凝结过程进行局部搜索,从而兼顾全局最优解和局部最优解的探索。在迭代过程中,算法不断更新飞蛾的位置,并根据适应度函数 (例如,负对数似然函数) 来评估不同超参数组合下的模型性能。通过迭代搜索,RIME 算法最终能够找到一组能够使模型性能最优的超参数。

将 RIME 算法应用于 GPR 超参数优化,具体步骤如下:

  1. 初始化: 随机生成一组初始的 GPR 超参数,例如 RBF 核函数中的长度尺度参数和信号噪声参数。

  2. 适应度评估: 利用初始超参数训练 GPR 模型,并计算其在验证集上的预测误差,作为适应度值。常用的误差指标包括均方误差 (MSE) 和均方根误差 (RMSE)。

  3. 霜冰算法迭代: 根据 RIME 算法的迭代机制,更新飞蛾的位置,即更新 GPR 的超参数。

  4. 收敛判断: 判断 RIME 算法是否收敛,例如达到最大迭代次数或适应度值不再改善。

  5. 结果输出: 输出 RIME 算法寻找到的最优超参数组合,以及对应的 GPR 模型。

本文通过大量的实验,比较了 RIME-GPR 与其他基于不同优化算法的 GPR 模型 (例如,粒子群优化算法 PSO-GPR, 模拟退火算法 SA-GPR) 的性能,验证了 RIME-GPR 在数据回归预测方面的有效性。实验结果表明,RIME-GPR 在预测精度和泛化能力方面都具有显著的优势,能够有效地提高 GPR 模型的预测性能。这主要得益于 RIME 算法的全局搜索能力和收敛速度,能够在较少的迭代次数内找到全局最优或接近全局最优的超参数组合。

此外,本文还分析了不同数据集上 RIME-GPR 的性能表现,探讨了 RIME 算法的参数设置对模型性能的影响。通过参数敏感性分析,我们可以找到 RIME 算法的最佳参数配置,进一步提高 RIME-GPR 的预测精度。

总而言之,本文提出了一种基于霜冰算法优化高斯过程回归的数据回归预测方法 RIME-GPR。通过实验验证,该方法能够有效地提高 GPR 模型的预测精度和泛化能力,为解决实际问题中的数据回归预测提供了一种新的有效途径。未来研究可以进一步探索 RIME-GPR 在不同类型数据和更复杂问题上的应用,并改进 RIME 算法以提高其效率和鲁棒性。 此外,结合深度学习技术,探索深度高斯过程与 RIME 算法的结合,也是一个值得研究的方向。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP、置换流水车间调度问题PFSP、混合流水车间调度问题HFSP、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值