【机器人】四自由度简易机器人Matlab仿真(输入四个关节的旋转角度 位置坐标)

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

摘要:随着机器人技术的飞速发展,多自由度机器人已被广泛应用于工业生产、医疗服务、科学研究等领域。本文针对四自由度简易机器人,探讨基于关节旋转角度输入的坐标控制问题。通过建立机器人的正逆运动学模型,实现了从关节角度到末端执行器位置坐标的映射以及从目标位置坐标到关节角度的求解。重点分析了四自由度机器人的结构特点,正逆运动学解的推导过程,以及控制算法的实现方法。实验结果表明,基于关节角度输入的坐标控制方案能够有效地控制机器人的运动轨迹,实现精确的末端定位。

关键词:四自由度机器人;正运动学;逆运动学;坐标控制;关节角度

1. 引言

机器人技术作为先进制造技术的重要组成部分,在推动社会进步和经济发展中发挥着日益重要的作用。多自由度机器人因其灵活性、通用性和可编程性,被广泛应用于各种复杂的作业场景。在诸多类型的机器人中,四自由度机器人结构相对简单,成本较低,且能满足许多特定应用的需求,因此在教育、科研和一些轻工业领域具有较高的应用价值。

控制机器人的关键在于能够精确控制其末端执行器的位置和姿态。传统方法主要基于关节角度输入,通过运动学模型计算末端执行器的坐标。本文旨在研究基于关节旋转角度输入的四自由度简易机器人控制,通过深入分析机器人的结构特点,建立准确的正逆运动学模型,并设计合适的控制算法,实现对机器人末端执行器位置的精确控制。

2. 四自由度机器人结构分析

本文所研究的四自由度简易机器人通常采用旋转关节构成,其结构可简化为一系列刚性连杆通过旋转关节连接而成。每个关节允许绕一个轴旋转,从而赋予机器人四个自由度。一种常见的四自由度机器人结构包括:

  • 基座关节 (Joint 1): 位于机器人底座,提供围绕垂直轴的旋转,负责机器人的水平方向定位。

  • 肩关节 (Joint 2): 位于第一连杆和第二连杆之间,提供垂直方向的旋转,控制机器人的上下运动。

  • 肘关节 (Joint 3): 位于第二连杆和第三连杆之间,提供弯曲动作,进一步调整机器人的姿态。

  • 腕关节 (Joint 4): 位于第三连杆末端,提供腕部的旋转,调整末端执行器的姿态,使其适应不同的工作方向。

这种结构的机器人具有相对较大的工作空间,能够实现较为复杂的运动轨迹。其简化结构也使其更容易进行运动学分析和控制。连杆长度和关节旋转范围是机器人设计中的重要参数,直接影响机器人的工作空间和运动性能。

3. 运动学建模

运动学建模是机器人控制的基础,包括正运动学和逆运动学两部分。

3.1 正运动学

正运动学描述了机器人关节角度与末端执行器位置和姿态之间的关系。给定机器人的关节角度,通过正运动学模型可以计算出末端执行器的位置坐标。本文采用D-H (Denavit-Hartenberg) 参数法建立四自由度机器人的正运动学模型。

D-H 参数包括四个参数:

  • a<sub>i</sub>: 连杆长度,表示连杆 i 和 i+1 之间沿 x<sub>i</sub> 轴的距离。

  • α<sub>i</sub>: 连杆扭角,表示连杆 i 和 i+1 之间绕 x<sub>i</sub> 轴旋转的角度。

  • d<sub>i</sub>: 连杆偏移,表示连杆 i 和 i+1 之间沿 z<sub>i-1</sub> 轴的距离。

  • θ<sub>i</sub>: 关节角度,表示连杆 i 和 i+1 之间绕 z<sub>i-1</sub> 轴旋转的角度。

首先,需要为机器人建立连杆坐标系,并确定每个连杆的D-H参数。然后,计算相邻连杆坐标系之间的变换矩阵 A<sub>i</sub>

A<sub>i</sub> = [cos θ<sub>i</sub> -sin θ<sub>i</sub> cos α<sub>i</sub> sin θ<sub>i</sub> sin α<sub>i</sub> a<sub>i</sub> cos θ<sub>i</sub>;
sin θ<sub>i</sub> cos θ<sub>i</sub> cos α<sub>i</sub> -cos θ<sub>i</sub> sin α<sub>i</sub> a<sub>i</sub> sin θ<sub>i</sub>;
0 sin α<sub>i</sub> cos α<sub>i</sub> d<sub>i</sub>;
0 0 0 1]

将相邻连杆的变换矩阵相乘,即可得到机器人基坐标系到末端执行器坐标系的变换矩阵 T

T = A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> A<sub>4</sub>

变换矩阵 T 包含了末端执行器相对于基坐标系的位置和姿态信息。通过提取 T 中的元素,可以得到末端执行器的位置坐标 (x, y, z) 和姿态角。

3.2 逆运动学

逆运动学是正运动学的逆过程,即给定末端执行器的目标位置和姿态,求解机器人所需的关节角度。逆运动学通常比正运动学更加复杂,可能存在多个解,甚至无解。对于四自由度机器人,逆运动学解的求解方法包括解析法和数值法。

  • 解析法: 通过几何关系或三角函数关系直接求解关节角度。解析法速度快,精度高,但只适用于结构相对简单的机器人。

  • 数值法: 通过迭代算法逼近逆运动学解。数值法适用性广,但计算量较大,且可能陷入局部最优解。

对于本文所研究的四自由度简易机器人,如果其结构较为简单,可以尝试采用解析法求解逆运动学。一般步骤如下:

  1. 根据给定的末端执行器位置坐标,计算出腕部中心的位置。

  2. 利用几何关系,求解肩关节和肘关节的角度。

  3. 根据末端执行器的姿态,求解腕关节的角度。

需要注意的是,逆运动学解可能存在多个解,需要根据实际情况选择合适的解。例如,可以选择使关节运动幅度最小的解,或者选择避开障碍物的解。

4. 基于关节角度输入的坐标控制

基于关节角度输入的坐标控制是指,首先通过上位机或控制系统给定机器人的关节角度,然后通过正运动学模型计算出末端执行器的位置坐标,最后将计算结果反馈给控制系统,实现对机器人末端执行器位置的精确控制。

本文研究了基于关节角度输入的四自由度简易机器人坐标控制问题。通过建立机器人的正逆运动学模型,设计合适的控制算法,实现了对机器人末端执行器位置的精确控制。实验结果验证了该控制方案的有效性。

未来研究方向包括:

  • 提高运动学模型精度: 采用更精确的建模方法,例如考虑连杆的柔性变形,可以提高运动学模型的精度。

  • 优化控制算法: 采用更先进的控制算法,例如自适应控制、模糊控制,可以提高控制的鲁棒性和精度。

  • 解决奇异点问题: 研究奇异点附近的控制策略,例如采用阻尼最小二乘法,可以避免奇异点导致的控制失败。

  • 集成视觉伺服: 将视觉传感器集成到控制系统中,实现基于视觉反馈的闭环控制,可以提高机器人的智能化水平。

⛳️ 运行结果

🔗 参考文献

[1] 冯飞,张洛平,张波.四自由度机器人Matlab仿真实例[J].河南科技大学学报:自然科学版, 2008, 29(3):24-26.DOI:10.3969/j.issn.1672-6871.2008.03.007.

[2] 石磊,金忠全.四自由度机器人的建模和仿真[J].组合机床与自动化加工技术, 2012(3):3.DOI:10.3969/j.issn.1001-2265.2012.03.009.

📣 部分代码

('CALLBACK',hObject,eventData,handles,...) calls the local%      function named CALLBACK in MAIN.M with the given input arguments.%%      MAIN('Property','Value',...) creates a new MAIN or raises the%      existing singleton*.  Starting from the left, property value pairs are%      applied to the GUI before Robot_OpeningFunction gets called.  An%      unrecognized property name or invalid value makes property application%      stop.  All inputs are passed to main_OpeningFcn via varargin.%%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one%      instance to run (singleton)".%% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name',       mfilename, ...                   'gui_Singleton',  gui_Singleton, ...                   'gui_OpeningFcn', @main_OpeningFcn, ...                   'gui_OutputFcn',  @main_OutputFcn, ...                   'gui_LayoutFcn',  [] , ...                   'gui_Callback',   []);
🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值