✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 随着全球能源结构的转型和对环境保护日益重视,风能和太阳能等可再生能源在电力系统中的渗透率持续提高。然而,风光发电的间歇性和不确定性给配电网的安全稳定运行带来了严峻挑战。针对风光发电高比例接入主动配电网所带来的不确定性问题,本文以IEEE33节点配电网为研究对象,提出一种基于多时间尺度滚动优化算法的主动配电网调度方法。该方法融合了日前计划、实时修正和超短期调节三个时间尺度,充分利用不同时间尺度的预测信息和反馈数据,动态调整配电网的运行策略,有效应对风光功率波动,提高系统的运行经济性和稳定性。本文详细阐述了多时间尺度滚动优化算法的原理和实现过程,并结合具体算例验证了其在应对风光不确定性方面的有效性,为主动配电网的高效稳定运行提供了重要的参考价值。
关键词: 主动配电网,风光发电,不确定性,多时间尺度滚动优化,IEEE33节点
1. 引言
全球气候变暖和化石能源枯竭的双重压力推动了可再生能源的快速发展。风能和太阳能作为最具潜力的可再生能源之一,在全球能源结构转型中扮演着越来越重要的角色。然而,风光发电具有间歇性、波动性和不可预测性等固有特性,大规模接入电网给电力系统的运行带来了诸多挑战,尤其是在配电网层面,由于其拓扑结构相对简单、电压等级较低,对风光发电波动的敏感性更高。
主动配电网(Active Distribution Network, ADN)作为一种能够主动管理和控制分布式电源和负荷的新型配电网,在应对风光不确定性方面具有显著优势。通过先进的控制技术和信息通信技术,主动配电网能够实现分布式电源的优化调度、电压调节、潮流控制等功能,从而提高配电网的接纳能力和运行效率。
为了充分发挥主动配电网的优势,需要开发高效可靠的优化调度方法,以应对风光发电的不确定性。传统的确定性优化方法难以适应风光发电的波动性,而随机优化和鲁棒优化等方法虽然能够处理不确定性,但计算复杂度较高,难以满足实际应用的需求。因此,需要探索更加高效灵活的优化方法,以应对主动配电网中风光发电的不确定性挑战。
2. 风光发电不确定性对主动配电网的影响
风光发电的不确定性主要体现在以下几个方面:
- 间歇性:
风光发电的功率输出受自然条件影响显著,具有明显的间歇性特征,呈现出周期性的变化规律,例如,太阳能发电在白天出力较高,夜间出力为零;风电的出力则随风速的变化而变化,呈现出一定的季节性和日变化规律。
- 波动性:
风速和光照强度的快速变化会导致风光发电功率的剧烈波动,这种波动可能在几分钟甚至几秒钟内发生,给电网的稳定运行带来冲击。
- 不可预测性:
风光发电的功率预测存在一定的误差,尤其是在短期和超短期预测方面,预测误差较大,增加了电网调度的难度。
风光发电的不确定性对主动配电网的影响主要体现在以下几个方面:
- 电压波动:
风光发电功率的波动会导致配电网电压的波动,电压越限可能影响用户的用电设备,甚至威胁电网的安全。
- 潮流拥塞:
风光发电的高比例接入可能导致配电网潮流分布的变化,出现线路过载等问题,影响电网的供电能力。
- 功率平衡困难:
风光发电功率的波动增加了电网功率平衡的难度,需要更加灵活的调节手段来维持电网的功率平衡。
- 降低电网运行经济性:
为了应对风光发电的不确定性,可能需要频繁启停传统发电机组或者增加备用容量,从而降低电网的运行经济性。
3. 多时间尺度滚动优化算法
多时间尺度滚动优化算法是一种能够有效应对风光发电不确定性的优化调度方法。该方法将优化问题分解为多个时间尺度,例如日前计划、实时修正和超短期调节,并在每个时间尺度上进行滚动优化,从而实现对风光发电不确定性的动态调整。
3.1 日前计划
日前计划是多时间尺度滚动优化算法的基础,其目标是确定未来一段时间内的最优运行计划,例如未来24小时的发电计划、负荷调度计划、储能充放电计划等。日前计划的优化目标通常是最小化电网的运行成本,包括发电成本、购电成本、备用成本等。日前计划的约束条件包括电网的潮流约束、设备容量约束、安全约束等。
日前计划的输入数据包括风光发电的日前预测、负荷的日前预测、设备参数等。日前计划的输出结果是未来一段时间内的最优运行计划,包括发电机的出力计划、储能的充放电计划、可控负荷的调度计划等。
3.2 实时修正
实时修正是在日前计划的基础上,根据实际运行情况对日前计划进行调整。由于风光发电的实际出力与日前预测之间存在一定的误差,因此需要根据实际的风光出力对日前计划进行修正,以保证电网的安全稳定运行。
实时修正的优化目标通常是最小化电网的运行偏差,例如最小化发电机的出力偏差、最小化储能的充放电偏差等。实时修正的约束条件包括电网的潮流约束、设备容量约束、安全约束等。
实时修正的输入数据包括风光发电的实时测量数据、负荷的实时测量数据、日前计划的输出结果等。实时修正的输出结果是对日前计划的修正,包括发电机的出力调整、储能的充放电调整、可控负荷的调度调整等。
3.3 超短期调节
超短期调节是在实时修正的基础上,对电网的运行状态进行更加精细的调节。由于风光发电功率的波动可能在几分钟甚至几秒钟内发生,因此需要对电网的运行状态进行快速的调节,以保证电网的电压稳定和频率稳定。
超短期调节的优化目标通常是最小化电网的电压偏差和频率偏差。超短期调节的约束条件包括电网的潮流约束、设备容量约束、安全约束等。
超短期调节的输入数据包括风光发电的超短期预测数据、负荷的超短期预测数据、实时修正的输出结果等。超短期调节的输出结果是对电网运行状态的快速调节,例如调节变压器的分接头、调节无功补偿装置的容量等。
3.4 多时间尺度协调机制
多时间尺度滚动优化算法的关键在于不同时间尺度之间的协调机制。日前计划为实时修正提供基础运行计划,实时修正根据实际情况对日前计划进行调整,超短期调节对电网运行状态进行精细调节。三个时间尺度相互配合,共同应对风光发电的不确定性。
不同时间尺度之间的信息传递和协调机制需要根据具体的应用场景进行设计。例如,可以采用滚动优化的方式,在每个时间尺度上重复进行优化计算,并将优化结果传递到下一个时间尺度。也可以采用基于预测误差的调节策略,根据预测误差的大小来调整实时修正和超短期调节的力度。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇