【无功功率控制】连接到无限电网的小型风电场的无功功率控制(Simulink)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源需求的日益增长和对环境保护意识的不断提升,风力发电作为一种清洁、可再生的能源形式,正受到越来越多的重视。小型风电场因其灵活性高、适应性强,能够分散式地接入电网,在缓解能源供应压力和促进可持续发展方面发挥着重要作用。然而,小型风电场接入电网也带来了一系列的技术挑战,其中,无功功率控制问题尤为突出。针对连接至无限电网的小型风电场,如何有效进行无功功率控制,保障电网安全稳定运行,提升电力系统效率,已成为当前研究的热点和重点。

本文将深入探讨连接至无限电网的小型风电场无功功率控制问题,首先分析无功功率的定义、影响及其在风电场中的产生机制;其次,阐述现有小型风电场无功功率控制策略,并对各种策略的优缺点进行详细的比较分析;最后,展望未来小型风电场无功功率控制技术的发展方向,并提出一些具有可行性的改进建议。

一、 无功功率概述及其在风电场中的产生机制

无功功率是电力系统中除有功功率之外的一种重要的能量形式。它主要用于建立和维持电力设备中的交变磁场或电场,本身并不消耗能量,但却是电力系统正常运行不可或缺的组成部分。从物理本质上讲,无功功率是电压与电流之间相位差的直接体现。当电压和电流的相位不同步时,就会产生无功功率。

无功功率对电力系统的影响是多方面的,主要体现在以下几个方面:

  • 电压稳定:

     电网电压水平与无功功率的平衡密切相关。无功功率不足会导致电压下降,严重时可能引发电压崩溃;而无功功率过剩则会导致电压升高,影响设备的绝缘性能。

  • 线路损耗:

     无功功率在电力线路中传输会增加电流,从而导致线路损耗增加,降低电网的输电效率。

  • 设备容量利用率:

     电力设备的容量是有限的,一部分容量被用于传输无功功率,就会降低设备的有功功率传输能力,影响设备的利用率。

在小型风电场中,无功功率的产生机制主要来源于以下几个方面:

  • 异步发电机:

     大部分小型风电场采用感应式异步发电机。异步发电机需要从电网吸收无功功率来建立磁场,维持正常运行。吸收的无功功率与风机的运行状态(风速、转速等)密切相关。

  • 电力电子变换器:

     为了将风机产生的交流电转换为符合电网要求的电压和频率,通常需要使用电力电子变换器。这些变换器本身也会产生或消耗无功功率,具体取决于变换器的拓扑结构和控制方式。

  • 输电线路和变压器:

     连接风电场与电网的输电线路和变压器也会产生或消耗无功功率,尤其是在长距离输电线路中,容性无功功率的影响更加显著。

二、 小型风电场无功功率控制策略

针对小型风电场无功功率控制问题,目前已提出多种控制策略,主要可以分为以下几类:

  • 基于感应发电机自身特性的无功功率控制:

    • 并联电容器补偿:

       这是最简单、最常用的无功功率补偿方法。通过在感应发电机的定子侧并联电容器,提供一部分无功功率,以减少从电网吸收的无功功率。这种方法的优点是成本低、易于实现,但缺点是补偿量是固定的,无法根据风机运行状态进行动态调节。

    • STATCOM (静止同步补偿器):

       STATCOM是一种基于电力电子变换器的动态无功功率补偿装置。它可以根据电网电压和无功功率需求,动态地发出或吸收无功功率,从而稳定电网电压,提高电网的功率因数。STATCOM的优点是响应速度快、补偿范围广,但缺点是成本较高,控制复杂。

    • SVG (静止无功发生器):

       SVG的原理与STATCOM类似,也是一种基于电力电子变换器的动态无功功率补偿装置。与STATCOM相比,SVG通常采用模块化设计,具有更高的可靠性和灵活性。

  • 基于变流器控制的无功功率控制:

    • 双馈式风力发电机 (DFIG):

       DFIG采用绕线式异步发电机,其转子侧通过变流器与电网相连。通过控制转子侧变流器的电流,可以独立地控制有功功率和无功功率的输出。DFIG具有较高的效率和灵活性,是大型风电场中常用的发电机类型。虽然在小型风电场应用较少,但其控制策略可借鉴。

    • 全功率变流器风力发电机 (FSIG):

       FSIG采用永磁同步发电机或感应发电机,通过全功率变流器与电网相连。由于变流器负责所有功率的转换,因此可以完全控制有功功率和无功功率的输出。FSIG的优点是灵活性高、易于实现电网支撑,但缺点是成本较高,效率相对较低。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值