✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 锂离子电池开路电压(OCV)与荷电状态(SOC)之间的关系,即OCV-SOC曲线,是电池管理系统(BMS)中的一项关键参数,直接影响电池状态估计的精度。传统的OCV-SOC曲线拟合方法,如最小二乘法,容易陷入局部最优,且对初始值敏感。本文提出一种基于麻雀搜索算法(SSA)的OCV-SOC曲线拟合方法,旨在克服上述缺陷,提高拟合精度和鲁棒性。该方法利用SSA强大的全局搜索能力和快速收敛特性,优化OCV-SOC曲线拟合模型的参数,实现对实验数据的精确逼近。实验结果表明,基于SSA的OCV-SOC曲线拟合方法在拟合精度和鲁棒性方面均优于传统方法,能够为BMS提供更准确的电池状态信息。
关键词: 锂离子电池;开路电压(OCV);荷电状态(SOC);OCV-SOC曲线;参数拟合;麻雀搜索算法(SSA);电池管理系统(BMS)
1. 引言
近年来,随着电动汽车和储能系统等领域的快速发展,锂离子电池的应用日益广泛。精确的电池状态估计是保证电池安全、高效运行的关键。电池管理系统(BMS)作为电池运行的“大脑”,负责监控、控制和管理电池。其中,荷电状态(SOC)是BMS中一项至关重要的参数,它反映了电池的剩余电量。准确估计SOC对电池的合理使用和寿命管理至关重要。
OCV-SOC曲线描述了电池在静置状态下开路电压与荷电状态之间的关系,是BMS进行SOC估计的基础。许多SOC估算方法,如查表法、卡尔曼滤波等,都依赖于精确的OCV-SOC曲线。因此,获取准确的OCV-SOC曲线至关重要。
传统的OCV-SOC曲线拟合方法主要包括最小二乘法、多项式拟合、指数函数拟合等。这些方法虽然简单易用,但存在一些局限性:一方面,它们容易陷入局部最优,无法保证找到全局最优解;另一方面,这些方法对初始值比较敏感,初始值的选取会显著影响拟合结果。此外,复杂的拟合模型容易出现过拟合现象,导致泛化能力下降。
为了解决上述问题,本文提出一种基于麻雀搜索算法(SSA)的OCV-SOC曲线拟合方法。SSA是一种新兴的群体智能优化算法,具有全局搜索能力强、收敛速度快、易于实现等优点。该方法利用SSA优化OCV-SOC曲线拟合模型的参数,克服了传统方法的缺陷,提高了拟合精度和鲁棒性。
2. OCV-SOC曲线拟合模型
OCV-SOC曲线的形状受到多种因素的影响,如电池类型、温度、老化程度等。因此,选择合适的数学模型来描述OCV-SOC曲线至关重要。常用的OCV-SOC曲线拟合模型包括多项式模型、指数函数模型、组合模型等。
本文采用一种常用的组合模型来描述OCV-SOC曲线,该模型综合考虑了多项式函数和指数函数的特点,能够较好地拟合不同类型的锂离子电池的OCV-SOC曲线:
scss
OCV = a_0 + a_1 * SOC + a_2 * SOC^2 + a_3 * SOC^3 + a_4 * exp(a_5 * SOC) + a_6 * exp(a_7 * (1 - SOC))
其中,OCV
表示开路电压,SOC
表示荷电状态,a_0
到a_7
为待拟合的参数。该模型的优点在于其灵活性,可以通过调整参数来适应不同电池的特性,并且具有一定的物理意义,例如指数项可以用来描述电池在极端SOC状态下的电压快速变化。
3. 麻雀搜索算法(SSA)
麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的一种新型群体智能优化算法,灵感来源于麻雀的觅食行为。SSA模拟了麻雀种群中不同角色(发现者、跟随者和预警者)之间的相互作用,从而实现对全局最优解的搜索。
-
发现者: 发现者负责寻找食物来源,通常具有较好的适应度值。它们在搜索过程中具有较大的搜索范围,并且引导整个种群的移动方向。
-
跟随者: 跟随者跟随发现者觅食,它们会根据发现者的位置和其他跟随者的位置来调整自己的位置。跟随者在搜索过程中有机会抢夺发现者的食物,从而实现种群的多样性。
-
预警者: 预警者负责监测种群周围的危险,当它们发现危险时,会发出警报,引导整个种群进行避险。预警者的存在可以避免种群陷入局部最优。
SSA的具体步骤如下:
- 初始化种群:
随机生成一定数量的麻雀个体,每个个体代表一个解。每个个体的位置对应于OCV-SOC曲线拟合模型的参数。
- 计算适应度值:
根据OCV-SOC曲线拟合模型,计算每个麻雀个体的适应度值。适应度值用于衡量解的优劣程度,通常选择均方误差(MSE)或均方根误差(RMSE)作为适应度函数。
- 角色分配:
根据适应度值,将麻雀种群划分为发现者、跟随者和预警者。
- 更新发现者位置:
发现者根据以下公式更新位置:
css
X_{i,j}^{t+1} =
\begin{cases}
X_{i,j}^{t} \cdot exp(-\frac{i}{\alpha \cdot iter_{max}}), & R_2 < ST \\
X_{i,j}^{t} + Q \cdot L, & R_2 \geq ST
\end{cases}
其中,X_{i,j}^{t}
表示第i
只麻雀在第t
次迭代中第j
维度的位置;iter_{max}
表示最大迭代次数;α
是一个0到1之间的随机数;R_2
表示预警值,ST
表示安全阈值;Q
是一个服从正态分布的随机数;L
是一个元素都为1的1×d的矩阵,d表示维度。
- 更新跟随者位置:
跟随者根据以下公式更新位置:
css
X_{i,j}^{t+1} =
\begin{cases}
Q \cdot exp(\frac{X_{worst}^{t} - X_{i,j}^{t}}{i^2}), & i > \frac{n}{2} \\
X_P^{t+1} + |X_{i,j}^{t} - X_P^{t+1}| \cdot A^+ \cdot L, & otherwise
\end{cases}
其中,X_{worst}^{t}
表示第t
次迭代中最差麻雀的位置;X_P^{t+1}
表示第t+1
次迭代中发现者的最佳位置;A
是一个元素为1或-1的1×d的矩阵,A^+ = A^T(AA^T)^{-1}
。
- 更新预警者位置:
预警者根据以下公式更新位置:
css
X_{i,j}^{t+1} =
\begin{cases}
X_{best}^{t} + \beta \cdot |X_{i,j}^{t} - X_{best}^{t}|, & f_i > f_g \\
X_{i,j}^{t} + K \cdot \frac{|X_{i,j}^{t} - X_{worst}^{t}|}{(f_i - f_w) + \epsilon}, & f_i = f_g
\end{cases}
其中,X_{best}^{t}
表示第t
次迭代中最佳麻雀的位置;β
是一个服从标准正态分布的随机数;K
是一个-1到1之间的随机数;f_i
表示第i
只麻雀的适应度值;f_g
表示当前全局最佳适应度值;f_w
表示当前全局最差适应度值;ε
是一个非常小的常数,用于避免除数为零。
- 更新最佳位置:
更新全局最佳位置和最佳适应度值。
- 判断是否达到终止条件:
如果达到最大迭代次数或满足其他终止条件,则停止迭代,输出最佳解;否则,返回步骤3。
4. 基于SSA的OCV-SOC曲线拟合流程
基于SSA的OCV-SOC曲线拟合流程如下:
- 数据采集:
通过实验获取锂离子电池的OCV-SOC数据。
- 数据预处理:
对采集到的数据进行清洗,去除噪声和异常值。
- 模型选择:
选择合适的OCV-SOC曲线拟合模型,本文选择上述的组合模型。
- 参数设置:
设置SSA的参数,包括种群大小、最大迭代次数、预警值、安全阈值等。
- 种群初始化:
随机生成一定数量的麻雀个体,每个个体代表一组OCV-SOC曲线拟合模型的参数。
- 适应度计算:
根据OCV-SOC曲线拟合模型和实验数据,计算每个麻雀个体的适应度值。适应度函数通常选择均方误差(MSE)或均方根误差(RMSE)。
- 迭代优化:
利用SSA的寻优机制,迭代更新麻雀种群的位置,逐步逼近最优解。
- 结果输出:
当达到最大迭代次数或满足其他终止条件时,停止迭代,输出最佳的OCV-SOC曲线拟合参数。
- 结果评估:
将拟合得到的OCV-SOC曲线与实验数据进行比较,评估拟合效果。常用的评估指标包括均方误差(MSE)、均方根误差(RMSE)、R方等。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇