【管道】树状管网中的因子化波传播模型及其在泄漏定位中的应用附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

管道系统,作为城市基础设施的重要组成部分,承担着输送水、气、油等重要资源的任务。管网的运行效率和安全性直接关系到城市经济的稳定发展和居民的生活质量。其中,泄漏问题不仅会导致资源浪费和经济损失,更可能引发严重的环境污染和安全事故。因此,如何快速、准确地定位管网泄漏点,一直是学术界和工程界共同关注的热点问题。近年来,基于波动理论的泄漏定位方法因其快速性和非侵入性而备受青睐。然而,传统的波动模型在处理复杂的树状管网时,往往面临计算量庞大、模型复杂度高等问题。本文将深入探讨一种基于因子化的波传播模型,并阐述其在树状管网泄漏定位中的应用,旨在为提升泄漏定位效率和准确性提供理论支撑和实践指导。

一、 树状管网泄漏定位的挑战与传统波动模型

树状管网通常具有复杂的分支结构和多变的管径,这使得泄漏产生的压力波在管网中传播路径复杂多样,且衰减严重。传统的波动模型,例如一维瞬态流动模型(1D Transient Flow Model),虽然能够较为精确地描述压力波在管道中的传播过程,但在应用于大型树状管网时,却面临以下挑战:

  1. 计算复杂度高:

     传统的波动模型通常需要对整个管网进行离散化处理,然后求解大规模的偏微分方程组。随着管网规模的增大,离散网格的数量成倍增加,导致计算量急剧上升,难以满足实时在线监测的需求。

  2. 模型构建复杂:

     构建精确的波动模型需要详细的管网拓扑结构信息、管道材质参数、流体性质参数等。这些参数的获取往往需要耗费大量的人力和物力,且参数的不确定性会直接影响模型的精度。

  3. 边界条件处理困难:

     树状管网中存在大量的节点,每个节点都需要设置相应的边界条件。复杂边界条件的处理,例如水泵、阀门、储水池等,会增加模型的复杂性和求解难度。

二、 因子化波传播模型的理论基础

为了克服传统波动模型的局限性,基于因子化的波传播模型应运而生。该模型的核心思想是将复杂的管网分解为多个简单的子网,然后分别建立子网的波动模型,并通过因子化的方式将这些子网模型连接起来。这种方法能够有效地降低模型的复杂度和计算量,提高求解效率。

因子化波传播模型主要基于以下几个关键理论:

  1. 传递函数理论:

     传递函数描述了系统输入和输出之间的关系。在波动模型中,传递函数可以将管道的入口压力和出口压力、流量之间的关系进行描述。对于简单的管道段,其传递函数可以很容易地通过理论推导得到。

  2. 图论:

     图论提供了一种描述管网拓扑结构的有效方法。通过将管网抽象成图,可以方便地进行子网分解和节点连接。

  3. 矩阵代数:

     矩阵代数提供了一种描述和求解线性方程组的有效工具。因子化波传播模型最终需要求解一个线性方程组,矩阵代数可以简化方程的表达和求解过程。

具体来说,因子化波传播模型的构建过程可以分为以下几个步骤:

  1. 管网分解:

     首先,将复杂的树状管网分解为多个简单的子网。常用的分解方法包括基于节点的分解和基于管段的分解。选择合适的分解方法需要综合考虑管网的拓扑结构和计算效率。

  2. 子网建模:

     对每个子网建立相应的波动模型。对于简单的管道段,可以直接使用传递函数来描述其波动特性。对于复杂的子网,可以使用简化的一维瞬态流动模型或基于有限元方法的模型。

  3. 节点连接:

     通过在节点处施加连续性条件和动量守恒条件,将各个子网模型连接起来。这些条件可以表达为线性方程组的形式。

  4. 方程求解:

     将所有子网的波动模型和节点连接条件组合成一个大型的线性方程组。然后,可以使用矩阵代数的方法,例如LU分解、Cholesky分解等,对该方程组进行求解。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值