【SLAM】基于扩展卡尔曼滤波器实现方位、范围和磁罗盘传感器输入目标滤波跟踪附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在自主导航、机器人学和目标跟踪等领域,精确的目标状态估计至关重要。然而,传感器数据的噪声和不确定性常常限制了直接测量结果的可用性。扩展卡尔曼滤波器(Extended Kalman Filter, EKF)作为一种强大的非线性系统状态估计算法,能够有效融合来自不同传感器的带有噪声和不确定性的数据,实现对目标状态的精确估计和预测。本文深入探讨了基于扩展卡尔曼滤波器,利用方位(Bearing)、范围(Range)和磁罗盘(Magnetic Compass)这三种异构传感器输入,实现目标滤波跟踪的原理、算法流程、关键实现细节以及潜在的应用价值。通过对系统模型的建立、状态预测与更新方程的推导、协方差矩阵的处理以及非线性函数雅可比矩阵的计算进行详细阐述,展示了如何构建一个鲁棒可靠的目标跟踪系统。

引言

目标跟踪是许多现代技术的核心组成部分,例如无人驾驶汽车的障碍物规避、无人机的侦察与监控、工业机器人的精确操作以及军事领域的态势感知。理想情况下,我们可以通过直接测量获取目标的精确位置和速度等状态信息。然而,实际应用中,传感器数据往往受到各种噪声和环境因素的干扰,导致测量结果不准确。例如,雷达和声纳系统提供的方位和范围信息可能受到杂波和多径效应的影响;磁罗盘提供的航向信息可能受到局部磁场干扰。因此,需要一种有效的滤波算法来处理这些带有噪声和不确定性的传感器数据,从而获得对目标状态的更准确、更平滑的估计。

卡尔曼滤波器(Kalman Filter, KF)是处理线性高斯系统状态估计的经典算法,具有最优估计的性质。然而,现实世界中的目标跟踪问题通常涉及非线性运动模型和非线性观测模型。扩展卡尔曼滤波器是卡尔曼滤波器的非线性推广,它通过在工作点处对非线性函数进行一阶泰勒级数展开进行线性化处理,从而将非线性问题转化为近似的线性问题,并应用卡尔曼滤波的思想进行状态估计。EKF的优点在于能够处理非线性系统,并且计算复杂度相对较低,适用于实时应用。

本文将重点研究如何利用EKF融合方位、范围和磁罗盘这三种异构传感器数据,实现对移动目标的滤波跟踪。方位传感器(如声纳、雷达、光学传感器)提供目标相对于传感器或平台的方向信息;范围传感器(如激光雷达、超声波传感器)提供目标与传感器之间的距离信息;磁罗盘提供平台或传感器的航向信息。这些传感器提供的测量信息互补且独立,通过EKF的融合,可以显著提高目标状态估计的精度和鲁棒性,尤其是在单一传感器信息不足或存在较大噪声的情况下。

系统建模

要应用EKF进行目标跟踪,首先需要建立目标的状态空间模型和观测模型。

2.1 状态空间模型

对于更复杂的运动模型,如匀加速模型(Constant Acceleration, CA)或转弯模型(Constant Turn Rate and Velocity, CTRV),状态转移函数是非线性的。然而,对于本文主要关注的传感器输入,即使目标运动模型是线性的,观测模型通常是非线性的。

2.2 观测模型

观测模型描述了传感器测量值与目标状态之间的关系。对于方位、范围和磁罗盘传感器,观测模型是非线性的。

  • 目标跟踪中,磁罗盘通常用于确定传感器平台自身的姿态,进而辅助计算目标相对于全局坐标系的方位。在本文的设定下,我们假设磁罗盘直接提供传感器的航向角,并且该航向角是已知的输入或作为另一个状态进行估计。为了简化讨论,我们假设磁罗盘提供的是传感器的绝对航向角,该观测值可以用于校正方位测量,将其从传感器坐标系转换到全局坐标系。然而,更直接的建模方法是将磁罗盘测量作为传感器平台姿态的输入,进而影响方位和范围测量的解释。

⛳️ 运行结果

🔗 参考文献

[1] 杨丽丽.基于粒子滤波器的大尺度环境下水下机器人的自主导航定位[D].中国海洋大学[2025-04-23].DOI:10.7666/d.y1503377.

[2] 双丰,马翰林,杨杰,等.基于改进EKF_LOAM的电缆沟巡检机器人精准定位策略[J].中国惯性技术学报, 2024, 32(4):326-335.DOI:10.13695/j.cnki.12-1222/03.2024.04.002.

[3] 丁帅华,陈雄,韩建达.基于局部子图匹配的SLAM方法[J].机器人, 2009, 31(4):8.DOI:CNKI:SUN:JQRR.0.2009-04-003.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值