【无人机三维路径规划】基于天鹰算法AO无人机三维路径规划(目标函数:最优成本 路径 高度 威胁 转角)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着无人机技术的飞速发展和广泛应用,无人机路径规划作为其自主导航的关键技术之一,显得尤为重要。在复杂多变的现代战场或民用环境中,无人机需要在三维空间中高效、安全地完成任务。传统的路径规划算法往往难以兼顾多种约束条件,而智能优化算法为解决这一问题提供了新的思路。本文提出一种基于天鹰算法(Aquila Optimizer, AO)的无人机三维路径规划方法,该方法旨在通过构建一个综合性的目标函数,最小化无人机的总飞行成本,该目标函数考虑了路径长度、飞行高度、环境威胁以及路径转角等多个关键因素。通过对天鹰算法的机理分析,结合无人机三维路径规划的特点,设计了相应的编码、初始化和寻优策略。仿真实验结果表明,相比于传统算法,基于天鹰算法的方法在复杂环境下能够寻找到更优的路径,有效降低飞行成本,提高任务执行的效率和安全性。

关键词: 无人机;三维路径规划;天鹰算法;智能优化;目标函数;成本优化

1. 引言

近年来,无人机(Unmanned Aerial Vehicle, UAV)在军事侦察、目标打击、物流配送、环境监测、灾害救援等领域展现出巨大的应用潜力。无人机的自主飞行能力是实现其多样化应用的关键,而路径规划则是自主飞行的核心技术之一。路径规划的目的是在给定的三维空间环境中,为无人机寻找一条从起点到终点,满足特定约束条件的最优或次优飞行轨迹[1]。

三维路径规划相较于二维路径规划更为复杂,需要考虑高度维度的变化以及三维空间中的障碍物、禁飞区、地形起伏等复杂因素。同时,无人机自身的飞行性能,如最大转角、最大爬升/下降率、最大速度等也需要纳入规划的约束。传统的路径规划算法,如A*算法[2]、Dijkstra算法[3]等,虽然在静态环境中能够找到最短路径,但在处理复杂、动态环境以及多目标优化问题时往往面临效率低、难以收敛等挑战。

为了应对三维路径规划的复杂性,研究人员将智能优化算法引入到无人机路径规划领域。粒子群优化(Particle Swarm Optimization, PSO)[4]、遗传算法(Genetic Algorithm, GA)[5]、模拟退火算法(Simulated Annealing, SA)[6]等算法已被广泛应用于无人机路径规划问题,并取得了一定的成果。然而,不同的智能算法具有不同的寻优机制和特点,其在解决特定问题时表现出的性能也各不相同。因此,探索和应用新型、高效的智能优化算法解决无人机三维路径规划问题具有重要的研究意义。

天鹰算法(Aquila Optimizer, AO)是近年来提出的一种新型元启发式优化算法,其灵感来源于天鹰在捕食过程中的独特策略。天鹰算法具有良好的全局搜索能力和局部开发能力,且参数较少,易于实现[7]。目前,天鹰算法已成功应用于函数优化、特征选择、图像处理等领域,展现出良好的优化性能。将天鹰算法应用于无人机三维路径规划问题,有望克服传统算法和部分现有智能算法的局限性,寻找到更加优化的路径。

本文旨在研究基于天鹰算法的无人机三维路径规划方法,构建一个综合考虑路径长度、飞行高度、环境威胁以及路径转角等因素的路径成本模型,并利用天鹰算法对该模型进行优化求解,以期获得最优的无人机飞行路径。

2. 问题描述与建模

2.1 空间建模

为了方便路径规划算法的实现,通常将连续的三维空间离散化。常用的离散化方法包括基于栅格地图的方法[8]。将三维空间划分为一系列均匀的立方体栅格,每个栅格代表空间中的一个小区域。通过标记每个栅格的状态(例如,自由空间、障碍物、威胁区域等),可以构建一个离散化的环境模型。

2.3 目标函数

本文构建一个综合性的目标函数,旨在最小化无人机总飞行成本。该成本函数考虑以下几个主要因素:

  • 路径长度成本(Cost_Length): 路径长度是衡量路径优劣的重要指标。通常希望路径越短越好,以节省飞行时间和能源消耗。路径总长度可以表示为相邻路径点之间直线距离之和:

3. 基于天鹰算法的路径规划

天鹰算法(Aquila Optimizer, AO)是2021年由Laith Abualigah等人提出的一种新型元启发式优化算法,其模拟了天鹰捕食猎物的行为过程。天鹰算法主要包含四个阶段:高空盘旋和发现猎物、滑翔攻击、低空飞行和缓慢攻击、地面攻击[7]。这些阶段对应于算法的全局搜索和局部开发过程。

3.1 天鹰算法基本原理

天鹰算法将优化问题的解表示为一个“天鹰”个体,每个个体代表一个潜在的路径。算法通过模拟天鹰的捕食行为,不断更新个体的位置(即路径),以寻找最优解。

  • 初始化:

     在搜索空间内随机生成一定数量的天鹰个体,每个个体代表一个随机生成的初始路径。

3.2 基于天鹰算法的无人机三维路径规划实现

将天鹰算法应用于无人机三维路径规划,需要进行以下关键步骤:

3.2.1 编码方案

3.2.2 初始化

在三维搜索空间中随机生成一定数量的初始路径。每个路径点的坐标需要在允许的范围内随机生成。为了提高初始路径的质量,可以考虑在起点和终点之间连一条直线,然后在直线上或附近随机扰动生成中间点。同时,需要检查初始路径是否穿过障碍物或禁飞区,如果存在,则重新生成。

3.2.3 适应度函数

3.2.4 约束处理

在优化过程中,需要处理各种约束条件,包括:

  • 障碍物/禁飞区规避:

     在计算路径成本时,需要判断路径点和路径段是否与障碍物或禁飞区发生碰撞。如果发生碰撞,则对相应的路径点或路径段施加极大的惩罚,增加威胁成本。

  • 高度约束:

     路径点的高度应在允许的范围内,超出范围则增加高度成本。

  • 转角约束:

     路径段之间的转角不应超过无人机的最大允许转角,超出则增加转角成本。

在每次更新天鹰个体位置后,需要检查新位置是否满足约束条件。对于超出搜索空间范围的坐标,可以将其限制在边界内。对于违反障碍物或禁飞区约束的路径,可以通过惩罚函数在适应度函数中体现。

3.2.5 寻优过程

利用天鹰算法的四个策略对种群进行迭代优化。在每次迭代中,根据当前最优个体、平均个体以及随机选择的个体位置,结合天鹰算法的更新公式,计算每个个体在下一代的位置。然后计算新位置对应的适应度值,并与当前个体的适应度值进行比较,选择更优的个体作为下一代。通过不断迭代,种群会逐渐向最优区域收敛。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值