高创新 | CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测作为数据科学领域的核心课题,在金融、气象、交通、医疗等诸多领域具有广泛的应用前景。然而,现实世界中的时间序列往往呈现出非线性、非平稳性以及复杂的波动模式,这为精确预测带来了严峻挑战。传统的预测方法,如ARIMA模型,往往难以捕捉这些复杂特征。近年来,随着机器学习和深度学习技术的飞速发展,基于神经网络的时间序列预测方法展现出强大的潜力,尤其是在处理非线性和复杂模式方面。在此背景下,本文将深入探讨一种高创新性的多元时间序列预测模型——CEEMDAN-VMD-GRU-Attention模型,该模型通过巧妙地融合双重分解技术、门控循环单元和注意力机制,力图在复杂多元时间序列预测中取得更优异的性能。

时间序列的非线性和非平稳性是导致预测精度下降的主要原因之一。传统的单一预测模型往往难以有效应对这些挑战。分解方法作为一种有效的预处理手段,能够将原始复杂时间序列分解为多个相对简单和稳定的子序列,从而降低预测难度。在该模型中,我们采用了双重分解策略,即CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)和VMD(Variational Mode Decomposition)。

首先,CEEMDAN作为一种改进的经验模态分解(EMD)方法,通过引入自适应噪声并进行整体平均,有效地解决了EMD方法中存在的模态混叠和端点效应问题。CEEMDAN能够将原始时间序列分解为一系列具有不同频率特性的固有模态函数(IMF)和一个残差项。这些IMF分量在一定程度上反映了时间序列在不同时间尺度上的波动特征,但其本身可能仍然存在一定的非线性和非平稳性。

为了进一步提升分解效果,我们引入了VMD方法。VMD是一种变分模态分解方法,它将信号分解问题转化为一个最优化的变分问题,通过寻找一系列具有指定带宽的VMD分量,实现了信号的自适应分解。与EMD及其改进方法不同,VMD是一种完全非递归的分解方法,其分解结果更加稳定且具有严格的数学基础。通过在CEEMDAN分解得到的每个IMF分量上进一步应用VMD,我们期望能够将每个IMF分量进一步分解为更具规律性和稳定性的VMD子分量。这种双重分解策略,即“CEEMDAN分解IMF,再对IMF进行VMD分解”,旨在更细致地捕捉时间序列的多尺度波动信息,将原始复杂信号分解为更易于建模和预测的成分。

在对原始多元时间序列进行CEEMDAN-VMD双重分解后,我们获得了大量的子序列,每个子序列代表了时间序列在特定频率和尺度上的波动模式。对于这些分解得到的子序列的预测,我们选择了门控循环单元(GRU)作为核心预测模型。GRU是长短期记忆网络(LSTM)的一种简化形式,它通过引入更新门和重置门,有效地解决了传统循环神经网络(RNN)在处理长序列时出现的梯度消失和梯度爆炸问题,同时降低了模型的复杂度。GRU单元能够在序列建模中捕捉长期依赖关系,对于具有时序特征的子序列预测具有天然优势。我们将每个分解得到的子序列作为独立的输入,通过各自的GRU模型进行训练和预测。

然而,不同的子序列对最终的预测结果可能具有不同的重要性。例如,代表高频波动的子序列可能对短期预测更重要,而代表低频趋势的子序列可能对长期预测更重要。简单地将所有子序列的预测结果进行加权求和可能无法充分利用不同子序列的贡献。为了解决这个问题,我们引入了注意力机制(Attention Mechanism)。注意力机制的核心思想是让模型在进行预测时,能够“关注”到输入序列中对当前预测最重要的部分。在我们的模型中,注意力机制被应用于GRU模型的输出端。具体而言,我们将所有子序列的GRU预测结果作为输入,通过一个注意力层,为每个子序列的预测结果分配一个权重。这些权重反映了该子序列对最终多元预测结果的贡献程度。通过训练,模型能够自适应地学习不同子序列的权重,从而更精确地整合各子序列的预测信息。

最终的预测结果是通过将每个子序列的GRU预测结果与其对应的注意力权重进行加权求和得到的。对于多元时间序列,这意味着我们将对每个维度的原始时间序列进行独立的CEEMDAN-VMD双重分解,然后对每个维度的所有分解子序列进行基于GRU-Attention的预测,最后将每个维度的预测结果组合起来,形成多元时间序列的预测值。

该CEEMDAN-VMD-GRU-Attention模型的预测流程可以概括如下:

  1. 数据预处理与标准化:

     对原始多元时间序列进行必要的预处理,如去除异常值、填充缺失值,并进行标准化,以消除不同维度和不同时间尺度上的量纲差异。

  2. CEEMDAN分解:

     对每个维度的原始时间序列进行CEEMDAN分解,得到一系列IMF分量和残差项。

  3. VMD分解:

     对每个IMF分量和残差项进一步进行VMD分解,得到更精细的VMD子分量。

  4. 构建子序列预测数据集:

     将每个维度的所有VMD子分量作为独立的子序列,构建用于GRU模型训练和预测的数据集。

  5. GRU模型训练与预测:

     为每个子序列训练一个独立的GRU模型,并利用训练好的模型对未来的子序列进行预测。

  6. 注意力机制加权:

     将所有子序列的GRU预测结果输入注意力机制,计算每个子序列预测结果的注意力权重。

  7. 集成预测:

     将每个子序列的GRU预测结果与其对应的注意力权重进行加权求和,得到该维度时间序列的最终预测结果。

  8. 多元预测集成:

     将所有维度的预测结果组合起来,形成多元时间序列的最终预测结果。

  9. 反标准化:

     对最终预测结果进行反标准化,恢复原始数据的量纲。

相比于传统的单一模型或者简单的分解预测方法,CEEMDAN-VMD-GRU-Attention模型具有以下创新点和优势:

  • 双重分解:

     结合CEEMDAN和VMD两种分解方法的优势,实现对复杂非线性、非平稳时间序列的多层次、多尺度分解,更全面地捕捉数据的内在波动模式。

  • 细致建模:

     对每个分解得到的子序列进行独立的GRU建模,针对不同频率和尺度的子序列特性进行预测,提高了预测精度。

  • 长序列处理能力:

     采用GRU模型,有效解决了传统RNN在处理长序列时的梯度问题,能够更好地捕捉时间序列的长期依赖关系。

  • 注意力机制:

     引入注意力机制,能够自适应地学习不同子序列对最终预测结果的贡献程度,避免了简单的加权求和,提高了模型对复杂关系的建模能力。

  • 多元时间序列适用性:

     模型能够有效地处理多元时间序列,通过对每个维度进行独立的分解和预测,并最终集成预测结果,实现了对多个相关时间序列的联合预测。

  • 高创新性:

     该模型将先进的信号分解技术与深度学习模型以及注意力机制巧妙结合,构建了一个高度集成且具有强大预测能力的模型框架,体现了较高的创新性。

该模型在实际应用中展现出良好的潜力,尤其是在处理具有复杂波动模式和多变量相互影响的时间序列预测问题上。然而,模型的训练和参数调优需要耗费大量的计算资源和时间。同时,双重分解过程中的模态数选择以及GRU模型和注意力机制的超参数设置对模型的性能影响显著,需要进行细致的实验和交叉验证来确定最优参数。

总而言之,CEEMDAN-VMD-GRU-Attention模型作为一种高创新的多元时间序列预测方法,通过融合CEEMDAN-VMD双重分解技术对复杂时间序列进行多尺度分解,利用GRU模型对分解得到的子序列进行细致建模,并引入注意力机制对子序列预测结果进行自适应加权,有效地提升了在非线性、非平稳多元时间序列预测中的精度和鲁棒性。该模型为复杂时间序列预测领域提供了一种新的思路和方法,在未来的研究和应用中具有广阔的发展前景。随着计算能力的不断提升和模型优化技术的不断进步,我们相信CEEMDAN-VMD-GRU-Attention模型及其衍生模型将在更多领域发挥重要作用,为解决实际问题提供更精确、可靠的预测支持。

⛳️ 运行结果

图片

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值