✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
日前调度
- 目标
:以智慧楼宇整体运行成本最低为目标,综合考虑电力采购成本、设备运行维护成本等,同时满足楼宇内各类用户的基本用电需求和舒适度要求。
- 数据收集与预测
:收集历史电力消耗数据、天气预测信息、用户行为模式等。通过数据分析和预测模型,预估次日楼宇内各区域、各时段的电力需求,以及可再生能源(如楼宇顶部太阳能板)的发电功率。
- 制定调度计划
:根据预测结果,结合需求侧响应激励措施,制定详细的日前调度计划。例如,对于可调节负荷(如电动汽车充电、储能设备充放电、非关键设备运行时间调整等)进行优化安排。对于参与需求侧响应的用户,承诺在特定时段给予一定的经济补偿或优惠,鼓励他们调整用电行为,避开用电高峰时段。
日内非滚动调度
- 实时信息更新
:在当日开始执行调度计划前,再次获取实时的天气数据、电网电价信息以及可能出现的特殊情况(如设备故障、临时增加的用电需求等)。
- 计划调整
:基于最新信息,对日前调度计划进行有限的调整。若电网电价出现较大波动,可适当调整储能设备的充放电策略,在电价低时充电,电价高时放电,以降低用电成本。若出现设备故障,及时调整相关负荷的分配,确保楼宇内关键设备的正常运行。
- 需求侧响应实施
:按照日前制定的需求侧响应方案,向用户发送通知,提醒他们在相应时段调整用电行为。同时,监测用户的响应情况,对于积极响应的用户进行记录和反馈,为后续的奖励机制提供依据。
日内滚动调度
- 时间间隔设置
:将日内时间划分为较短的时间间隔,如 15 分钟或 30 分钟一个周期。在每个周期开始前,根据最新的实时数据进行滚动调度。
- 实时数据监测与分析
:实时监测楼宇内各区域的实际用电负荷、可再生能源的实时发电功率、电网的实时运行状态等信息。通过数据分析,及时发现用电异常情况和潜在的优化空间。
- 动态调整调度策略
:根据实时数据,动态调整可调节负荷的运行状态。例如,当发现某区域的用电负荷超过预期时,可通过智能控制系统自动调整该区域部分非关键设备的运行功率或暂停运行,同时向该区域用户发送提示信息。若可再生能源发电功率超出预期,可优先将多余电量存储到储能设备中,或向电网出售。
实时修正
- 事件触发机制
:当出现突发紧急事件(如电网故障导致停电、火灾等)或重要设备运行状态出现异常时,立即触发实时修正机制。
- 紧急调度策略
:针对不同的紧急情况,制定相应的紧急调度策略。如在电网停电时,优先启动备用电源(如柴油发电机、不间断电源 UPS 等),保障楼宇内关键设备(如消防系统、电梯、应急照明等)的运行。对于火灾等特殊情况,迅速切断相关区域的非必要电源,以防止电气火灾的蔓延。
- 事后评估与反馈
:在紧急事件处理完毕后,对实时修正的效果进行评估,分析事件发生的原因和调度策略的有效性。将评估结果反馈给调度系统,以便对后续的调度策略进行优化和改进,提高智慧楼宇应对突发事件的能力。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇