回归预测 | Matlab实现DBO-LightGBM蜣螂算法优化轻量级梯度提升机多输入单输出回归预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在机器学习应用日益广泛的今天,多输入单输出回归预测是解决众多实际问题的关键技术,如房价预测、销售额预估、环境指标测算等。然而,传统回归模型在处理高维、复杂的多输入数据时,常面临计算效率低、预测精度不足的困境。DBO-LightGBM 模型将蜣螂算法(DBO)与轻量级梯度提升机(LightGBM)相结合,为多输入单输出回归预测带来了新的突破方向。

一、多输入单输出回归预测:挑战与需求

多输入单输出回归预测旨在通过多个自变量特征,预测一个目标变量的数值。以房价预测为例,房屋面积、房龄、周边配套设施、交通便利程度等多种特征共同影响房价这一输出结果。这些输入特征往往具有高维性、非线性关系,且数据中可能存在噪声和冗余信息,使得模型难以准确捕捉特征与目标变量之间的映射关系。传统的回归模型,如线性回归、决策树回归等,在处理此类复杂数据时表现欠佳,而一些复杂的机器学习模型虽然具备更强的拟合能力,但可能存在计算资源消耗大、训练时间长的问题,因此亟需更高效、精准的模型。

二、核心组件原理剖析

2.1 蜣螂算法(DBO)

蜣螂算法是一种新兴的元启发式优化算法,灵感来源于蜣螂滚动粪球寻找合适巢穴的行为。在算法中,每个蜣螂个体代表一个潜在解,粪球的滚动过程模拟解的搜索过程。蜣螂通过感知周围环境信息,动态调整自身位置,向更优解的方向移动。算法主要包括位置更新和适应度评估两个关键步骤。在位置更新时,蜣螂会根据自身经验和群体信息调整移动方向和距离;适应度评估则用于衡量每个解的优劣程度,通过不断迭代更新,逐步找到最优解。该算法具有搜索能力强、收敛速度快等特点,能够有效应用于复杂函数优化和模型参数调整场景。

2.2 轻量级梯度提升机(LightGBM)

LightGBM 是梯度提升决策树(GBDT)的高效实现,采用了直方图算法、单边梯度采样、互斥特征捆绑等创新技术。直方图算法将连续的特征值离散化为区间,大大减少了计算量;单边梯度采样通过只采样梯度较大的数据点,减少数据量的同时保证模型精度;互斥特征捆绑则将互斥的稀疏特征捆绑在一起,降低特征维度。这些技术使得 LightGBM 在训练速度和内存占用方面具有显著优势,并且能够有效处理大规模数据,在分类和回归任务中都有出色表现 。但 LightGBM 的性能对超参数较为敏感,合适的超参数设置能让其发挥更强的预测能力。

三、DBO-LightGBM:优化与融合

3.1 优化过程

DBO-LightGBM 模型利用蜣螂算法对 LightGBM 的关键超参数进行优化。首先,确定需要优化的超参数,如树的数量(num_leaves)、学习率(learning_rate)、最大深度(max_depth)等;然后,将这些超参数的取值范围作为蜣螂搜索的空间,每个蜣螂个体的位置对应一组超参数组合。在每次迭代中,根据当前超参数组合训练 LightGBM 模型,并以模型在验证集上的预测误差(如均方误差 MSE)作为适应度函数,评估该超参数组合的优劣。蜣螂根据适应度值更新自身位置,逐步寻找使 LightGBM 预测误差最小的超参数组合。通过多次迭代,最终得到经过优化的超参数,用于构建性能更优的 LightGBM 模型。

3.2 融合优势

DBO-LightGBM 结合了 DBO 强大的全局搜索能力和 LightGBM 高效的模型训练与预测能力。DBO 能够在超参数空间中快速找到较优的参数组合,避免 LightGBM 陷入局部最优,提升模型的预测精度;而 LightGBM 本身的轻量化设计和高效算法,确保了在优化后的超参数下,模型能够快速处理多输入数据,实现高效、精准的回归预测。相比未优化的 LightGBM 或其他传统回归模型,DBO-LightGBM 在处理多输入单输出回归任务时,无论是预测准确性还是计算效率都有明显提升。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值