✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在数据挖掘与机器学习领域,多特征分类预测任务一直是研究热点。随机森林(Random Forest,RF)作为一种集成学习算法,凭借其良好的分类性能和鲁棒性,被广泛应用于各类分类预测场景。然而,随机森林模型的参数选择对其性能影响较大,为进一步提升模型在多特征分类预测中的准确率和效率,将粒子群算法(Particle Swarm Optimization,PSO)与随机森林相结合,利用 PSO 对 RF 进行优化,成为极具潜力的研究方向。
一、粒子群算法与随机森林原理
1.1 粒子群算法
粒子群算法由 Eberhart 和 Kennedy 于 1995 年提出,其灵感源于鸟群觅食和鱼群洄游等群体智能行为。在 PSO 中,每个粒子代表问题的一个潜在解,粒子在解空间中以一定速度飞行,并根据自身历史最优位置和群体历史最优位置调整飞行方向和速度。
粒子的速度和位置更新公式如下:
1.2 随机森林
随机森林是基于 Bagging 集成学习框架构建的一种分类与回归算法,由多棵决策树组成。在构建随机森林时,首先通过自助采样法(Bootstrap Sampling)从原始训练数据集中有放回地抽取多个样本集,用于训练每一棵决策树;其次,在决策树的每个节点进行分裂时,从所有特征中随机选取一部分特征,然后在这些随机特征中选择最优的特征进行分裂。
随机森林通过集成多棵决策树的预测结果,采用投票(分类问题)或平均(回归问题)的方式得出最终预测结果。这种集成策略使得随机森林能够有效降低模型的方差,提高模型的泛化能力和鲁棒性,在处理高维数据和复杂分类问题时表现出色。
二、PSO 优化随机森林的过程
2.1 确定优化参数
随机森林有多个关键参数影响其性能,如树的数量(n_estimators)、最大深度(max_depth)、分裂特征选择方式(max_features)等。在 PSO-RF 模型中,将这些参数作为粒子在解空间中的维度,即每个粒子的位置向量对应一组随机森林的参数设置。
2.2 适应度函数设计
适应度函数用于评估每个粒子所代表的随机森林模型在多特征分类预测任务中的性能。常见的适应度函数可以选择分类准确率、F1 值、AUC 值等评价指标。以分类准确率为例,适应度函数
2.3 PSO 迭代优化
初始化粒子群的位置和速度,根据当前粒子位置设置随机森林的参数并训练模型,计算每个粒子的适应度值。然后,更新粒子的个体最优位置和全局最优位置,并按照速度和位置更新公式对粒子进行迭代更新。不断重复训练模型、计算适应度和更新粒子的过程,直到满足预设的停止条件,如达到最大迭代次数或适应度值收敛。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 叶肖伟,张小龙,陈延博,等.基于粒子群优化-随机森林(PSO-RF)算法的盾构隧道施工期管片最大上浮量预测(英文)[J]. 2024(1):1-18.
[2] 帅爽,张志,张天,等.特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法[J].农业工程学报, 2023, 39(9):287-293.DOI:10.11975/j.issn.1002-6819.202210205.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类