DTW-Kmeans-Transformer-GRU模型!时序聚类+状态识别!

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在工业物联网、金融市场分析、医疗健康监测等领域,时序数据蕴含着丰富的信息。如何从海量时序数据中提取有效特征,实现精准的时序聚类与状态识别,成为数据挖掘与机器学习领域的重要研究方向。传统方法在处理复杂时序数据时存在一定局限性,而 DTW(动态时间规整)、Kmeans、Transformer 和 GRU(门控循环单元)相结合的模型,为时序聚类与状态识别提供了全新的解决方案。

一、核心模型原理

1.1 DTW(动态时间规整)

DTW 是一种衡量两个时序序列相似性的算法,尤其适用于时间序列在时间轴上存在非线性变化的情况。它通过计算两个序列之间的最小累积距离,找到最佳的时间规整路径,使得两个序列能够在时间上对齐并达到最佳匹配。在时序聚类中,DTW 能够有效度量不同时序数据之间的相似程度,为聚类分析提供可靠的距离度量标准。

1.2 Kmeans 聚类算法

Kmeans 是一种经典的无监督聚类算法,其核心思想是将数据集划分为 K 个簇,通过不断迭代更新簇中心,使得每个数据点到其所属簇中心的距离之和最小。在时序聚类任务中,Kmeans 算法基于 DTW 计算的距离度量,将相似的时序数据划分到同一簇中,实现时序数据的初步聚类。

1.3 Transformer 架构

Transformer 基于注意力机制,能够有效捕捉序列数据中的长距离依赖关系,并且具有并行计算的优势,极大提高了模型训练效率。在处理时序数据时,Transformer 可以从全局角度学习时序数据的特征表示,挖掘数据中复杂的模式和规律,为后续的状态识别提供更丰富的特征信息。

1.4 GRU(门控循环单元)

GRU 是循环神经网络(RNN)的一种变体,通过引入更新门和重置门,有效解决了 RNN 存在的梯度消失和梯度爆炸问题,能够更好地处理具有长期依赖关系的时序数据。在状态识别任务中,GRU 可以根据历史时刻的状态信息,结合当前时刻的输入,预测数据的状态变化,实现对时序数据状态的动态识别。

二、DTW-Kmeans-Transformer-GRU 模型融合

2.1 时序数据预处理与 DTW-Kmeans 聚类

首先对原始时序数据进行归一化、去噪等预处理操作,提高数据质量。然后利用 DTW 算法计算时序数据之间的相似距离,将其作为 Kmeans 聚类的依据,将时序数据划分为不同的簇。通过 DTW-Kmeans 聚类,将具有相似变化趋势的时序数据归为一类,为后续模型训练提供更具代表性的样本。

2.2 Transformer 特征提取

将聚类后的时序数据输入到 Transformer 模型中,利用 Transformer 的注意力机制,从不同时间步长和特征维度上提取时序数据的关键特征。Transformer 能够捕捉到数据中复杂的时间依赖关系和全局特征,将原始时序数据映射为高维特征向量,这些特征向量包含了数据的深层语义信息。

2.3 GRU 状态识别

将 Transformer 提取的特征向量作为 GRU 的输入,GRU 根据输入的特征信息和内部记忆状态,对时序数据的状态进行识别。通过训练 GRU 模型,使其能够学习到不同状态下时序数据的特征模式,从而准确预测数据的状态变化,实现对时序数据的状态识别。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
### 动态时间规整(DTW)与 K-Means 的结合 动态时间规整(Dynamic Time Warping, DTW)是一种用于测量两个序列之间相似性的技术,尤其适用于长度不一致的时间序列数据。它通过允许非线性对齐来最小化累积距离,从而计算两条曲线之间的最佳匹配路径[^1]。 #### 结合 DTW 和 K-Means 的挑战 传统的 K-Means 聚类依赖于欧几里得距离作为度量标准,而当处理时间序列数据时,这种简单的距离度量可能无法捕捉到复杂的形状变化或时间上的伸缩变形。因此,可以考虑将 DTW 替代为聚类中的距离函数。然而,这种方法存在一些固有的困难: - **质心定义问题**:K-Means 需要计算簇内的平均值(即质心),但在基于 DTW 的框架下,如何有效定义并计算这些质心是一个开放性问题。 一种常见的解决方案是采用软分配方法或者迭代优化策略,在每次更新过程中重新估计最优的代表序列。 #### 实现流程概述 以下是实现 DTW-KMeans 的基本思路及其 Python 示例代码片段: 1. 初始化随机选取若干条时间序列为初始中心点; 2. 对每一条样本分别计算其相对于各个中心的距离矩阵(利用 `dtw` 库或其他工具完成具体操作); 3. 将每个实例指派给最近的那个类别标签; 4. 更新新的中心位置——这一步骤通常涉及寻找加权平均意义上的原型序列; 5. 循环执行直到收敛条件满足为止。 下面给出一段简单示例程序展示这一过程的核心部分: ```python from dtaidistance import dtw import numpy as np def compute_dtw_distance_matrix(data): n = len(data) distance_matrix = np.zeros((n,n)) for i in range(n): for j in range(i+1, n): # Only calculate upper triangular part due to symmetry. dist = dtw.distance_fast(data[i], data[j]) distance_matrix[i][j] = dist distance_matrix[j][i] = dist # Fill symmetrically. return distance_matrix class DtwKmeans: def __init__(self, num_clusters=3, max_iter=100): self.num_clusters = num_clusters self.max_iter = max_iter def fit(self, X): m = X.shape[0] self.centers_ = X[np.random.choice(m, size=self.num_clusters)] prev_assignments = None for it in range(self.max_iter): distances_to_centers = [] for center_idx in range(len(self.centers_)): current_center_distances = [ dtw.distance(x_seq, self.centers_[center_idx]) for x_seq in X ] distances_to_centers.append(current_center_distances) assignments = np.argmin(distances_to_centers, axis=0)[^1] new_centers = [] for cluster_id in set(assignments.tolist()): assigned_points = [X[k] for k in range(len(X)) if assignments[k]==cluster_id] avg_point = reduce(lambda p,q: sum([p]+list(q))/len(list(q)+[p]),assigned_points) # Simplified pseudo-code new_centers.append(avg_point) self.centers_ = new_centers if not any(prev_assignments != assignments): break prev_assignments = assignments.copy() ``` 请注意以上伪码仅作示意用途,并未完全遵循实际编码规范;特别是关于质心求解的部分需要进一步细化调整才能达到理想效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值