✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景与意义
在全球对清洁能源需求持续攀升的当下,太阳能作为一种清洁、可再生能源,在能源结构转型中扮演着愈发重要的角色。三相并网光伏系统凭借其高效的发电能力和稳定的输出特性,成为太阳能利用的主流方式之一。然而,当光伏系统接入电网后,负载特性对系统的影响不容忽视。在实际应用中,线性和非线性负载广泛存在,非线性负载(如变频器、开关电源等)会产生谐波电流、电压波动等问题,严重影响电能质量,甚至威胁电网的安全稳定运行 。开展额定功率为 33kW 的三相并网光伏系统在不同负载条件下的研究,探索提升电能质量的有效控制策略,对于推动光伏产业发展、保障电网可靠运行具有重要的现实意义。
二、三相并网光伏系统组成结构
2.1 光伏阵列
光伏阵列由多个太阳能电池板串联、并联组成,其作用是将太阳能转化为直流电。通过合理设计光伏阵列的串并联方式,可以调整输出电压和电流,以满足后续环节的需求。在 33kW 的三相光伏系统中,光伏阵列的选型和布局需要综合考虑光照强度、温度等环境因素以及系统的额定功率要求。
2.2 直流 - 直流(DC-DC)变换器
DC-DC 变换器用于调节光伏阵列输出的直流电压,使其稳定在合适的范围内,以提高光伏系统的发电效率。常见的 DC-DC 变换器拓扑结构有 Boost 变换器等,通过控制开关器件的导通和关断时间,实现对电压的升压或降压变换。
2.3 三相逆变器
三相逆变器是光伏系统的核心部件之一,它将 DC-DC 变换器输出的直流电转换为与电网同频、同相的三相交流电。逆变器的性能直接影响着光伏系统的电能质量和并网效率,其控制策略需要精确调节输出电压和电流的幅值、相位和频率。
2.4 滤波装置与并网接口
滤波装置用于滤除逆变器输出的高次谐波,减少谐波对电网的污染。常见的滤波方式有 L 型滤波、LCL 型滤波等。并网接口则实现光伏系统与电网之间的电气连接,确保光伏系统输出的电能能够安全、稳定地并入电网。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类