【信号处理】基于有序模式的度量对多变量时间序列进行非线性分析附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,复杂系统科学的发展推动了对多变量时间序列非线性分析的需求日益增长。传统的线性方法往往无法捕捉复杂系统中的非线性动态特征,因此,非线性分析方法应运而生。在众多非线性分析方法中,基于有序模式(Ordinal Pattern)的度量因其概念简洁、计算效率高、对噪声鲁棒性强等优点,在多变量时间序列的分析中得到了广泛应用。本文将深入探讨基于有序模式的度量在多变量时间序列非线性分析中的应用,包括其基本原理、常用度量以及在实际应用中的优势和挑战。

一、有序模式理论基础

有序模式分析方法的核心思想是忽略时间序列的具体数值,而关注其局部结构中数据点的排序关系。对于一个长度为 d 的时间序列段 {x(t), x(t+τ), ..., x(t+(d-1)τ)},其中 τ 为时间延迟,我们可以根据数值大小将其映射到一个唯一的排序模式 π<sub>i</sub>。例如,当 d = 3 时,如果 x(t) < x(t+τ) < x(t+2τ),则对应的有序模式为 π<sub>1</sub> = [1, 2, 3]。对于一个长度为 d 的序列段,共有 d! 种可能的排序模式。

基于有序模式的分析方法依赖于对所有可能的排序模式进行统计分析。通过统计每个排序模式 π<sub>i</sub> 在整个时间序列中出现的频率 p(π<sub>i</sub>),我们可以得到一个排序模式分布,该分布反映了时间序列的动力学特征。不同的时间序列会呈现出不同的排序模式分布,这为我们区分和分析不同的时间序列提供了基础。

二、基于有序模式的常用度量

基于排序模式分布,我们可以构建一系列度量来量化时间序列的非线性特征。以下是一些常用的基于有序模式的度量:

  1. 排序模式熵 (Permutation Entropy, PE):排序模式熵是基于排序模式分布的信息熵,定义为:

    PE = - Σ p(π<sub>i</sub>) log p(π<sub>i</sub>)

    其中 Σ 表示对所有可能的排序模式 π<sub>i</sub> 进行求和。排序模式熵反映了时间序列的复杂程度,其值越大,说明时间序列的随机性越高,复杂性越大。对于完全规则的序列,其排序模式熵为 0;对于完全随机的序列,其排序模式熵达到最大值 log(d!)。

  2. 条件熵 (Conditional Entropy, CE):条件熵用于衡量在已知某个排序模式 π<sub>i</sub> 的条件下,下一个排序模式 π<sub>j</sub> 出现的条件概率分布的不确定性。定义为:

    CE = - Σ p(π<sub>i</sub>, π<sub>j</sub>) log p(π<sub>j</sub> | π<sub>i</sub>)

    其中 p(π<sub>i</sub>, π<sub>j</sub>) 表示 π<sub>i</sub> 和 π<sub>j</sub> 连续出现的联合概率,p(π<sub>j</sub> | π<sub>i</sub>) 表示在 π<sub>i</sub> 出现的条件下,π<sub>j</sub> 出现的条件概率。条件熵可以揭示时间序列中不同排序模式之间的依赖关系。

  3. 复杂度-熵因果平面 (Complexity-Entropy Causality Plane, CECP):CECP 是一种可视化的分析方法,它将每个时间序列映射到二维平面上,其横坐标为复杂度度量(例如,复杂度C<sub>0</sub>),纵坐标为排序模式熵(PE)。复杂度C<sub>0</sub> 用于衡量时间序列的规则性,其值越接近0,说明序列越规则;其值越接近1,说明序列越随机。在 CECP 平面上,不同的区域对应于不同的动态模式,例如,规则区域、混沌区域和随机区域。通过分析时间序列在 CECP 平面上的位置,我们可以对时间序列的动力学特性进行分类和识别。

  4. 多尺度排序模式熵 (Multiscale Permutation Entropy, MSPE):传统的排序模式熵只考虑了单一时间尺度下的排序模式分布,而 MSPE 则通过对时间序列进行粗粒化处理,在不同的时间尺度下计算排序模式熵。MSPE 可以揭示时间序列在不同尺度上的复杂性,对于分析具有多尺度结构的复杂系统非常有用。

三、有序模式度量在多变量时间序列分析中的应用

在多变量时间序列分析中,我们可以将基于有序模式的度量扩展到多个变量,从而分析变量之间的相互作用和同步关系。以下是一些常用的方法:

  1. 联合排序模式熵 (Joint Permutation Entropy, JPE):JPE 将多个时间序列看作一个整体,对它们的联合排序模式进行分析。例如,对于两个时间序列 x(t) 和 y(t),我们可以根据它们的数值大小,构建一个二维的排序模式。通过计算联合排序模式的熵,我们可以衡量两个时间序列的联合复杂性。

  2. 条件传递熵 (Conditional Transfer Entropy, CTE):CTE 用于衡量一个时间序列对另一个时间序列的信息传递量,同时考虑到其他变量的影响。CTE 基于条件概率分布,可以更准确地揭示时间序列之间的因果关系,避免虚假相关。

  3. 互相关分析 (Cross-correlation Analysis):虽然互相关分析不是基于有序模式的直接度量,但可以与有序模式分析相结合。通过计算不同变量之间的互相关系数,我们可以了解它们之间的线性相关程度。结合有序模式分析,我们可以更全面地了解变量之间的线性和非线性关系。

四、有序模式度量在实际应用中的优势和挑战

基于有序模式的度量在多变量时间序列分析中具有以下优势:

  • 概念简洁,易于理解

    :有序模式分析方法的核心思想是关注数据的排序关系,而不是具体数值,这使得其概念简洁明了,易于理解。

  • 计算效率高

    :与一些复杂的非线性分析方法相比,基于有序模式的度量的计算效率相对较高,适用于处理大规模的时间序列数据。

  • 对噪声鲁棒性强

    :由于有序模式分析方法忽略了数据的具体数值,因此对噪声具有较强的鲁棒性。即使时间序列中存在噪声,排序模式的分布也不会发生太大变化。

  • 能够捕捉非线性动态特征

    :有序模式分析方法可以捕捉时间序列中的非线性动态特征,例如混沌、自组织等,这些特征往往无法通过线性方法进行分析。

然而,基于有序模式的度量也存在一些挑战:

  • 参数选择

    :有序模式分析方法需要选择嵌入维数 d 和时间延迟 τ 这两个参数。参数的选择会影响分析结果,需要根据具体问题进行调整。常用的方法包括基于互信息或者延迟互信息的选择方法。

  • 对序列长度的依赖性

    :对于短时间序列,排序模式的统计分布可能不准确,导致分析结果出现偏差。因此,需要保证时间序列的长度足够长,以获得可靠的统计结果。

  • 难以处理具有重复值的序列

    :当时间序列中存在重复值时,排序模式的定义可能会出现问题。常用的解决方法包括添加微小的随机扰动或者忽略重复值。

五、结论与展望

基于有序模式的度量为多变量时间序列的非线性分析提供了一种有效且实用的工具。通过关注时间序列的局部结构,我们可以捕捉到隐藏在数据中的非线性动态特征,并分析变量之间的相互作用和同步关系。虽然基于有序模式的度量也存在一些挑战,但随着研究的不断深入,这些问题将逐步得到解决。未来,基于有序模式的度量将在更广泛的领域得到应用,例如,生物信号处理、金融市场分析、环境监测等。随着计算能力的提升和算法的优化,我们可以期待基于有序模式的度量在多变量时间序列非线性分析中发挥更大的作用。此外,结合机器学习和深度学习等技术,可以进一步提升基于有序模式的度量在复杂系统建模和预测方面的能力。例如,可以使用有序模式熵作为特征,训练分类器或者回归模型,用于识别不同的动态模式或者预测未来的时间序列。总而言之,基于有序模式的度量在多变量时间序列非线性分析中具有重要的研究价值和应用前景。

⛳️ 运行结果

🔗 参考文献

[1] Iqbal S .基于非线性时间序列分析的被动动态行走混沌现象研究[D].哈尔滨工业大学,2016.DOI:CNKI:CDMD:1.1016.739844.

[2] 袁捷.激流怪潮发生机理研究与预警统计模式研究[D].上海交通大学,2013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值