电商推荐系统需求分析与系统设计文档
1. 项目背景
本周主要任务是对电商推荐系统进行需求分析,重点研究以下方向:
- 现有开源推荐系统技术调研
- 多模态数据采集策略
- 系统核心模块逻辑设计
- 技术实现路径规划
同时,通过调研了解到,目前大厂的评估推荐系统质量的方式主要是以下两种,但困囿于项目实训的资源限制,我们不可能像大厂那样进行线上AB测试,所以我们主要采用离线评估的方案,后续的模型调研方向也主要是离线评估
离线评估: 模型在上线服务之前需要评估该模型的准确度,一般是将训练数据分为训练集和测试集。
在线评估: 模型上线提供推荐服务过程中来评估一些真实的转化指标,如转化率、购买率、点击率等。
2. 技术调研分析
2.1 开源推荐系统全景图
项目名称 | 技术特点 | 适用场景 | 开发语言 |
---|---|---|---|
EasyRec | 支持多目标排序模型,TensorFlow生态集成 | 电商场景CTR/CVR预估 | Python/C++ |
LightFM | 混合协同过滤,支持冷启动 | 内容推荐场景 | Python |
Implicit | 隐式反馈优化,高性能Cython实现 | 用户行为分析 | Python/Cython |
Surprise | 经典推荐算法集合,易用性强 | 教学与算法验证 | Python |
FastFM | 因子分解机快速实现 | 特征组合场景 | Python/C |
2.2 关键技术对比
3. 系统需求分析
3.1.1 多模态数据采集模块
数据类型 | 采集方式 | 更新频率 | 样例字段 |
---|---|---|---|
用户画像 | 埋点采集 | 实时 | {user_id, age, gender, location} |
行为日志 | 日志收集 | 准实时 | {session_id, click_time, item_id, dwell_time} |
商品特征 | 数据库导出 | 每日 | {item_id, title, category, image_emb} |
现有数据集
Amazon: Book/Electricity/Clothing/Sports等电商平台推荐数据集,包括Item侧文本/视觉信息
MicroLens: A Content-Driven Micro-Video Recommendation Dataset at Scale
PixelRec: An Image Dataset for Benchmarking Recommender Systems with Raw Pixels
上面两篇工作是西湖大学发布的多模态推荐数据集
TikTok:短视频推荐,包含视频的文本描述和视频帧信息
NetFlix:网飞 视频推荐数据集
3.2 ETL处理流程
3.3 特征工程架构
特征处理流程:
- 类别特征: Target Encoding
- 文本特征: BERT embedding
- 图像特征: ResNet特征提取
- 时序特征: 滑动窗口统计
特征存储方案:
# 特征集样例
user_id,item_id,hist_ctr,cate_preference,price_sensitivity
1001,2056,0.23,0.87,0.45
1002,3098,0.15,0.62,0.78
4. 核心系统设计
4.1 推荐算法选型
4.1.1 召回阶段
- 多路召回策略:
- 协同过滤召回(Item-CF)
- 热门商品召回
- 用户画像召回
4.1.2 排序模型
# 深度学习模型架构示例
def ranking_model():
input_user = Input(shape=(user_feat_dim,))
input_item = Input(shape=(item_feat_dim,))
# 特征交叉层
cross_layer = Dot(axes=1)([input_user, input_item])
# 深度网络
dense = Dense(128, activation='relu')(cross_layer)
output = Dense(1, activation='sigmoid')(dense)
return Model(inputs=[input_user, input_item], outputs=output)
4.2 服务架构设计
5. 实施路线图
5.1 开发里程碑
阶段 | 交付物 | 技术指标 |
---|---|---|
数据中台 | 完成多源数据接入 | 数据延迟<5s |
算法实验 | 建立基线模型 | NDCG@10>0.35 |
服务部署 | 上线推荐API | QPS>1000 |
效果迭代 | A/B测试框架 | 迭代周期<3天 |
5.2 风险评估
风险项 | 应对策略 | 负责人 |
---|---|---|
冷启动问题 | 引入知识图谱辅助推荐 | 算法组 |
特征穿越 | 严格时间分区控制 | 数据组 |
服务雪崩 | 熔断降级机制 | 运维组 |
6. 附录
参考资料
- 《推荐系统实践》 项亮 著
- RecSys 2023 最佳论文
- Netflix推荐系统技术白皮书
本方案通过模块化设计实现以下创新点:
1. 多模态特征融合架构支持图文/视频特征联合建模
2. 分层召回+精排的两阶段推荐范式
3. 基于Flink的实时特征计算管道
4. 模型热更新机制实现分钟级迭代
后续实施需重点关注数据质量监控与在线服务性能优化,建议采用渐进式迭代策略,优先验证核心推荐链路有效性。