山大软院22级项目实训--基于LLM的多模态推荐系统

电商推荐系统需求分析与系统设计文档

1. 项目背景

本周主要任务是对电商推荐系统进行需求分析,重点研究以下方向:

  • 现有开源推荐系统技术调研
  • 多模态数据采集策略
  • 系统核心模块逻辑设计
  • 技术实现路径规划

同时,通过调研了解到,目前大厂的评估推荐系统质量的方式主要是以下两种,但困囿于项目实训的资源限制,我们不可能像大厂那样进行线上AB测试,所以我们主要采用离线评估的方案,后续的模型调研方向也主要是离线评估

离线评估: 模型在上线服务之前需要评估该模型的准确度,一般是将训练数据分为训练集和测试集。
在线评估: 模型上线提供推荐服务过程中来评估一些真实的转化指标,如转化率、购买率、点击率等。

2. 技术调研分析

2.1 开源推荐系统全景图

项目名称技术特点适用场景开发语言
EasyRec支持多目标排序模型,TensorFlow生态集成电商场景CTR/CVR预估Python/C++
LightFM混合协同过滤,支持冷启动内容推荐场景Python
Implicit隐式反馈优化,高性能Cython实现用户行为分析Python/Cython
Surprise经典推荐算法集合,易用性强教学与算法验证Python
FastFM因子分解机快速实现特征组合场景Python/C

2.2 关键技术对比

算法类型
协同过滤
内容推荐
混合推荐
内存式CF
模型式CF
TF-IDF
Embedding
加权混合
特征级混合

3. 系统需求分析

3.1.1 多模态数据采集模块

数据类型采集方式更新频率样例字段
用户画像埋点采集实时{user_id, age, gender, location}
行为日志日志收集准实时{session_id, click_time, item_id, dwell_time}
商品特征数据库导出每日{item_id, title, category, image_emb}

现有数据集

Amazon: Book/Electricity/Clothing/Sports等电商平台推荐数据集,包括Item侧文本/视觉信息
MicroLens: A Content-Driven Micro-Video Recommendation Dataset at Scale 
PixelRec: An Image Dataset for Benchmarking Recommender Systems with Raw Pixels
上面两篇工作是西湖大学发布的多模态推荐数据集 
TikTok:短视频推荐,包含视频的文本描述和视频帧信息
NetFlix:网飞 视频推荐数据集 

3.2 ETL处理流程

数据源 数据采集层 清洗引擎 转换引擎 存储系统 原始数据推送 字段校验/去重 特征编码/标准化 分区存储到HBase 数据源 数据采集层 清洗引擎 转换引擎 存储系统

3.3 特征工程架构

特征处理流程

  1. 类别特征: Target Encoding
  2. 文本特征: BERT embedding
  3. 图像特征: ResNet特征提取
  4. 时序特征: 滑动窗口统计

特征存储方案

# 特征集样例
user_id,item_id,hist_ctr,cate_preference,price_sensitivity
1001,2056,0.23,0.87,0.45
1002,3098,0.15,0.62,0.78

4. 核心系统设计

4.1 推荐算法选型

4.1.1 召回阶段
  • 多路召回策略:
    • 协同过滤召回(Item-CF)
    • 热门商品召回
    • 用户画像召回
4.1.2 排序模型
# 深度学习模型架构示例
def ranking_model():
    input_user = Input(shape=(user_feat_dim,))
    input_item = Input(shape=(item_feat_dim,))
    
    # 特征交叉层
    cross_layer = Dot(axes=1)([input_user, input_item])
    
    # 深度网络
    dense = Dense(128, activation='relu')(cross_layer)
    output = Dense(1, activation='sigmoid')(dense)
    
    return Model(inputs=[input_user, input_item], outputs=output)

4.2 服务架构设计

客户端
API网关
推荐服务
实时特征库
模型仓库
缓存集群
Flink实时计算
模型热更新

5. 实施路线图

5.1 开发里程碑

阶段交付物技术指标
数据中台完成多源数据接入数据延迟<5s
算法实验建立基线模型NDCG@10>0.35
服务部署上线推荐APIQPS>1000
效果迭代A/B测试框架迭代周期<3天

5.2 风险评估

风险项应对策略负责人
冷启动问题引入知识图谱辅助推荐算法组
特征穿越严格时间分区控制数据组
服务雪崩熔断降级机制运维组

6. 附录

参考资料

  1. 《推荐系统实践》 项亮 著
  2. RecSys 2023 最佳论文
  3. Netflix推荐系统技术白皮书

本方案通过模块化设计实现以下创新点:  
1. 多模态特征融合架构支持图文/视频特征联合建模  
2. 分层召回+精排的两阶段推荐范式  
3. 基于Flink的实时特征计算管道  
4. 模型热更新机制实现分钟级迭代  

后续实施需重点关注数据质量监控与在线服务性能优化,建议采用渐进式迭代策略,优先验证核心推荐链路有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值