AAAI 2019《Object Detection based on Region Decomposition and Assembly》论文理解

Abstract

要解决的问题:
由于遮挡和不准确的区域推荐,导致目标CNN特征的分辨率很低,导致检测精度被降级。
作者的方法:
作者提出一种区域分解和装配检测器(R-DAD)来进行更精准的目标检测。
作者方法简介

  1. 首先,为了能得到更精准地区域提案,作者还提出了多尺度推荐层(multi-scale proposal layer)来生成多种尺寸的目标提案
  2. 然后,将整个object区域分解成多个小区域。为了同时获取object的整个外观和部分细节,提取全部的目标区域被分解的区域的CNN特征。
  3. 最后,逐步地结合多区域的特征(用RAB),来学习object和它的part之间的语义关系,并且用组合的、高等级的语义特征来做目标分类和定位。

Introduction

R-DAD依赖于

  • 基于多尺度的区域提案,来提高RPN的区域提案精准度。
  • 基于多区域的外观模型,来共同描述一个对象的全局和局部外观。

Related works

前人探索:
为了提高检测和分割能力,在利用不同分辨率和区域提取多个特征图方面的一些探索:

  • (Gidaris and Komodakis 2015) 通过结合多个区域特征来提高特征分辨率和多样性。
  • (Zeng et al. 2016) 通过信息传递来学习不同的分辨率的特征图之间的关系和依赖。
  • (Lin et al. 2017a) 从自底向上和自顶向下的路径连接卷积和反卷积(或上采样)特征mas,实现多尺度特征表示。
  • HyperNet (Kong et al. 2016) and ION (Bellet al. 2016) 连接不同层的特征图,然后用转换的含有更多上下文和语义信息的特征图来预测目标

探索总结:
总的来说,都集中在了两个点:

  • 多区域表示来提高特征分辨率和多样性。
  • 多尺度表示来检测无图像金字塔的小尺寸目标。

Region Decomposition and Assembly Detector

在这里插入图片描述
分类网络使用ImageNet训练的,图中的base network用的是ResNet。

RDA

在RDA中学习整个图片和被拆解的图片的外观,主要过程是:

  1. 先将一个完成的对象区域产分成多个小区域,并且提取多个区域的特征。
  2. 然后在学习被拆解的部分之间的强的语义依赖的时候,把这几个部分的模型整合到一起。
  3. 结合全部的外观模型和部分外观模型之间的特征图,用这个来做目标回归和分类。

MRP network

该网络的目标

  1. 增加区域提案的多样性平衡前景和背景样本的数量
  2. 平衡前景和背景样本的数量,选择合适的框来进行训练和推理。

输入

  • RPN生成的区域推荐

使用的方法

  1. 缩放:用RPN生成区域提案 d d d,然后使用缩放因子 s s s对区域提案进行缩放 d s = ( x , y , w ⋅ s , h ⋅ s ) d^s=(x,y,w\cdot s,h\cdot s) ds=(x,y,ws,hs),作者分别设置了 s = [ 0.5 , 0.7 , 1 , 1.2 , 1.5 ] s=[0.5,0.7,1,1.2,1.5] s=[0.5,0.7,1,1.2,1.5],如图二左侧,这里的缩放并不是将一个图变大或变小,而是获得一个相对于原来的推荐框的扩大,框中的内容会随之变化。
    利用多尺度检测能进一步增加区域提案的多样性。

    • 使用更大的 s s s,能够获得对象的上下文信息(背景或互相遮挡的物体)
    • 使用更小的 s s s能够在高分辨率中研究局部细节,而且对识别因被遮挡而导致无法获取全部物体细节的物体有好处。
      在这里插入图片描述
  2. 过滤:当使用9个anchor和5个缩放因子的时候,在"conv4"层的大小为 63 × 38 63 \times 38 63×38的特征图中会生成 63 × 38 × 9 × 5 63\times 38\times 9\times 5 63×38×9×5个提案,从中挑取一些低置信度和低IoU(与gt)的提案删除掉,最后将留适当数量的提案(例如256)(方法和SSD中相同)。
    之后,在mini-batch中保持有物体和没物体的采样比例相等,并且用mini-batch来微调Figure 1中的检测器。

输出

  • 缩放过且过滤后适当数量的区域提案

RDA network

一般来说,特征的强烈反应是识别物体最重要的线索之一。

该网络目标
对于来自MRP网络的每个提案,通过逐步的结合多区域的特征(RAB)来推出强线索,如图1 ORA所示。为了实现这个目的,需要学习能表示不同part的特征之间语义关系的权重,并且利用这个权重来控制在下一层中传播的特征的数量

输入

  • conv4的特征图
  • MRP生成的ROI

使用的方法
来自RPN的区域提案通常假定是覆盖了物体的全部区域。作者通过将 d d d分割成多个part区域来生成更小的被拆解区域,让这些part区域覆盖不同的对象部分,如Figure 2右侧所示。

  1. 整体目标区域提取特征:RDA中处理whole目标区域的OD层(Whole Object Region)接在conv4之后,首先利用RoI pooling提取整个目标区域的大小为 h r o i × w r o i h_{roi}×w_{roi} hroi×wroi变形特征 X l X_l Xl h r
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值