目录 一、【LAE】卷积 1.1【LAE】卷积介绍 1.2【LAE】核心代码 二、添加【LAE】卷积机制 2.1STEP1 2.2STEP2 2.3STEP3 2.4STEP4 三、yaml文件与运行 3.1yaml文件 3.2运行成功截图 一、【LAE】卷积 1.1【LAE】卷积介绍 下图是【LAE】卷积的结构图,让我们简单分析一下运行过程和优势 处理过程分析: 输入张量:输入的特征图尺寸为 ℎ×𝑤×𝑐,表示图像的高度、宽度和通道数。 轻量级提取(Lightweight Extraction): 分组卷积:输入特征图经过分组卷积(groups=c/16),将输入通道分成多个小组进行卷积操作。这种操作减少了计算成本,使得特征提取更加高效。 维度映射