YOLO11改进|卷积篇|引入轻量级自适应提取卷积LAE

在这里插入图片描述

一、【LAE】卷积

1.1【LAE】卷积介绍

在这里插入图片描述

下图是【LAE】卷积的结构图,让我们简单分析一下运行过程和优势

  • 处理过程分析:
  • 输入张量:输入的特征图尺寸为 ℎ×𝑤×𝑐,表示图像的高度、宽度和通道数。
  • 轻量级提取(Lightweight Extraction):
    分组卷积:输入特征图经过分组卷积(groups=c/16),将输入通道分成多个小组进行卷积操作。这种操作减少了计算成本,使得特征提取更加高效。
    维度映射
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值