backbone骨干网络

本文介绍了深度学习中骨干网络的作用,列举了VGG、ResNet、Inception、MobileNet和EfficientNet等常见架构,并展示了如何在PyTorch中使用ResNet50进行图像分类和目标检测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中,"backbone"(骨干网络)是指一个模型的主干部分,负责从原始输入中提取特征。这些特征对于后续任务(如分类、目标检测、语义分割等)非常重要。骨干网络通常是一个深层卷积神经网络(CNN)或者其他类似架构的子网络。

常见的骨干网络包括但不限于:

  1. VGG: Visual Geometry Group (VGG) 提出了一系列深度卷积神经网络,其中 VGG16 和 VGG19 是最常见的。这些网络由多个卷积层和池化层组成,具有深层的架构。

  2. ResNet: Residual Network(ResNet)是由微软提出的一种深度残差网络结构。它引入了残差连接,允许网络学习残差函数,从而更容易地训练非常深的网络。ResNet 可以有不同的深度,如 ResNet50、ResNet101 等。

  3. Inception: Inception 模块由 Google 提出,旨在通过不同大小的卷积核和池化层的组合来提取多尺度的特征。InceptionV3 和 InceptionResNetV2 是其中较为知名的版本。

  4. MobileNet: MobileNet 是一种轻量级的卷积神经网络,旨在在资源受限的环境中进行高效的计算。它采用了深度可分离卷积等策略,以减少模型的参数量和计算量。

  5. EfficientNet: EfficientNet 是由 Google 提出的一系列模型,通过对网络的深度、宽度和分辨率进行组合,以在给定资源约束下获得更好的性能。

  6. DenseNet: DenseNet 提出了一种密集连接的结构,在网络中每一层都与前面所有层连接。这种密集连接的结构有助于提高特征传播和梯度流动,使得网络更易训练。

  7. ResNeXt: ResNeXt 是对 ResNet 的改进,引入了分组卷积的概念,以提高网络的表示能力,同时保持模型的计算效率。

以上是一些常见的骨干网络,每个网络都有其独特的架构和特点,可以根据具体的任务需求和资源限制选择合适的骨干网络。

"backbone" 后面接的是具体的任务模块或者是整个模型的后续部分。根据具体的任务需求,可以将骨干网络与不同的任务模块进行组合,例如:

  1. 分类任务:在图像分类任务中,通常将骨干网络的输出连接到一个全

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值