模型修改之替换骨干网络(backbone)

本文介绍了如何将3D目标检测模型Group-Free 3d中的PointNet++骨干网络替换为Transformer模块Pointformer。关键在于保证输入输出的匹配,包括查看网络参数设置,确保新旧骨干网络的输入输出尺寸一致,并通过debug模式检查替换后的模型输入输出是否与原始模型匹配。替换可能带来性能提升,但也可能存在兼容性问题,需要不断调试和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

说实话这篇文章是没有在计划之内的,但是有读者说让我出一个使用transformer替换其他骨干网络的示例,想了想,最近好像没啥状态的,论文有点看不下去,正好整理一下自己的经验把。说实话替换骨干网络说简单也简单,说麻烦也麻烦,替换骨干网络个人感觉就是一个debug代码匹配输入输出的问题,作为菜鸡的一种能想到的改进模型方式之一,替换骨干网络也不失为一种锻炼自己看懂代码、改代码的能力,废话就到这里,下面开始文章的内容。

替换骨干网络的原则

为什么一些模型能够把其内部的模块进行替换?理由很简单,就是把里面的模块看作一个黑盒子,黑盒子有着输入和输出,那么作为网络中的一个部分,前面有着输入过来,后面也需要输出到其他模块,要想替换该模块而让模型能够运行起来,关键是输入输出的匹配问题,下面就以我自己实验过模型作为例子。
我要替换的骨干网络是3D目标检测的一个方法叫Group-Free 3d,它使用的骨干网络是PointNet++,就是下面的图中用红色框框出来的部分。
在这里插入图片描述
而我想用一个transformer的骨干网络Pointformer替换掉PointNet++。首先这里我说一下为什么我想用Pointformer来替换PointNet++,因为在Pointformer这个论文中,它说Pointformer这个骨干网络可以替换PointNet++来获得更好的性能,我观察到Grou

<think>嗯,用户想知道如何计算更换骨干网络后的模型参数量。首先,我需要回忆一下深度学习模型参数量的计算方法。通常来说,模型的参数量主要来自于各层的权重和偏置项。比如卷积层的参数量是输入通道数乘以卷积核大小,再乘以输出通道数,再加上偏置的数量。全连接层则是输入单元数乘以输出单元数加上偏置。 然后,用户提到替换骨干网络,比如把ResNet换成MobileNet或者EfficientNet。这时候,我需要考虑骨干网络的结构差异。比如ResNet有残差块,每个块里有多个卷积层,而MobileNet可能使用深度可分离卷积,这样参数会减少很多。所以替换骨干网络后,参数量变化主要取决于新旧骨干的结构差异。 接下来,计算步骤应该包括:首先确定原骨干网络的参数量,可以通过模型结构计算或者直接调用框架的函数,比如PyTorch的torchsummary。然后,同样的方法计算新骨干网络的参数量。之后,整个模型的参数量就是新骨干的参数量加上其他部分(比如分类头)的参数,假设其他部分没有变化的话。 还要注意是否有跨层参数共享的情况,比如ALBERT模型中参数共享会减少总参数量。如果替换骨干网络有共享参数,计算时需要乘以层数。例如,每层的参数是P,有N层,共享的话总参数量就是P,而不共享则是P*N。 用户可能需要具体的公式,比如卷积层的参数量公式:$K_h \times K_w \times C_{in} \times C_{out} + C_{out}$。然后,整个骨干网络的参数量是所有层参数量的总和。替换之后,总和变化,其他部分不变的话,总参数量就是新的总和加上其他部分。 另外,用户可能需要知道如何验证计算结果,比如使用现有的库来统计参数量,或者手动计算对比。还要提醒用户注意全连接层和分类头的参数,这些可能容易被忽略,但尤其是当骨干网络输出维度改变时,分类头的参数也会变化,需要重新计算。 可能的问题包括:如果骨干网络输出特征图的尺寸或通道数改变,后续网络的输入是否匹配?比如分类层的输入维度如果依赖于骨干网络的输出,那么替换骨干后可能需要调整分类层,从而影响参数量。因此,用户需要检查整个模型的结构而不仅仅是骨干部分。 总结一下,步骤应该是:1. 确定原骨干参数量;2. 确定新骨干参数量;3. 计算其他部分参数量;4. 总和相加,注意参数共享和结构变化带来的影响。同时,提供具体的例子和验证方法会更清楚。</think>### 更换骨干网络模型参数量的计算方法 #### 1. **参数量组成原理** 模型参数量主要由以下部分构成: - **卷积层**:$K_h \times K_w \times C_{in} \times C_{out} + C_{out}$(卷积核尺寸 $K_h \times K_w$,输入/输出通道数 $C_{in}/C_{out}$,包含偏置项) - **全连接层**:$D_{in} \times D_{out} + D_{out}$(输入/输出维度 $D_{in}/D_{out}$,含偏置) - **批归一化层**:$2 \times C$(每个通道的缩放因子和偏移量) - **注意力机制**:如多头注意力层的参数为 $3 \times d_{model} \times d_k \times h + d_{model} \times d_v$($h$为头数,$d_k/d_v$为键值维度)[^2] #### 2. **骨干网络替换的参数量计算步骤** **步骤1:分离骨干网络参数** - 原模型总参数量 = 骨干网络参数量 + 其他模块参数量(如分类头、检测头等) - **示例**:若原模型使用ResNet-50(约25.5M参数),分类头含1个全连接层($2048 \times 1000 + 1000 \approx 2.05M$),总参数量为 $25.5M + 2.05M = 27.55M$。 **步骤2:计算新骨干网络参数量** - 手动计算:逐层累加各层参数(公式见第1部分) - 代码验证(以PyTorch为例): ```python from torchsummary import summary new_backbone = MobileNetV3() # 替换为实际骨干网络 summary(new_backbone, (3, 224, 224)) ``` **步骤3:组合新模型参数量** - 若仅替换骨干且其他模块未变: $$ P_{total}^{new} = P_{backbone}^{new} + (P_{total}^{old} - P_{backbone}^{old}) $$ - **注意**:若骨干输出维度改变(如ResNet输出2048维,MobileNet输出1024维),需重新计算分类头参数量: $$ P_{head}^{new} = D_{out}^{new} \times N_{class} + N_{class} $$ #### 3. **特殊情况处理** - **参数共享**:若骨干网络存在跨层共享(如ALBERT),参数量需按共享次数计算。例如某层参数为$P$,共享$N$次时总参数量仍为$P$[^2]。 - **动态结构**:对条件计算模型(如Switch Transformer),需统计激活路径的期望参数量。 #### 4. **验证方法** 1. **代码对比**: ```python # 原模型 total_params = sum(p.numel() for p in model.parameters()) # 新模型 new_model = NewBackboneWithHead() new_total_params = sum(p.numel() for p in new_model.parameters()) ``` 2. **在线工具**:使用Netron可视化模型结构并逐层检查参数。 #### 5. **示例计算** 假设原模型为ResNet-50 + 分类头: - ResNet-50参数量:25.5M - 分类头参数量:$2048 \times 1000 + 1000 = 2,049,000$ - 总参数量:27.55M 替换为EfficientNet-B3后: - EfficientNet-B3参数量:12M - 新分类头(输出维度1536):$1536 \times 1000 + 1000 = 1,537,000$ - 总参数量:$12M + 1.537M = 13.537M$(减少约48.8%) ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值