Understanding Graph Embedding Methods and Their Applications

Abstract

但是传统方法受到与工业规模网络的高维性和异构特性相关联的高计算成本和过多存储器需求的困扰。
图嵌入方法就很高效,另一种新兴的图嵌入采用基于高斯分布的图嵌入,并具有重要的不确定性估计。
我们提出一些基本概念,特别关注基于随机游走和基于神经网络的方法。

Introduction

传统的图分析,包括路径分析、连通性分析、社区分析和中心性分析,主要基于直接从邻接矩阵中提取手工绘制的图拓扑特征。当我们将这些方法应用于工业系统中的大规模网络分析时,由于原始网络具有挑战性和不可避免的高维性以及新兴的异构特征,它们可能会面临高计算成本和过多的内存需求[43]。此外,手工设计的特征通常是特定于任务的,并且在用于不同任务时不能实现等同的性能。
图嵌入技术(主要称为节点嵌入)已经显示出将高维稀疏图转换为低维、稠密和连续向量空间的显著能力(见图1)。如下图:
在这里插入图片描述

除了节点嵌入之外,还有其他类型的嵌入,例如,边嵌入、子结构嵌入和全图嵌入;参见综述论文[9]。

2.2.2. Node Similarity Measures in the Original Graphs

原始图中节点之间的相似性可以基于五个不同方面来表征:

  • presence of edges
  • overlapped neighborhood
  • reachable bu k-hops
  • reachable through random walks
  • similar node attributes

基于多跳邻域的节点相似性

“跳””术语最初出现在有线计算机网络领域,”“跳数””可以提供源主机和目的主机之间距离的度量.
近年来,为了对原始图中的节点邻居进行采样并保持图的结构特性,多跳邻域(或k-hop邻域)方法成为解决图嵌入问题的一种有效方法。
具体地,k跳邻域被定义为从源节点在k跳或更少跳中可到达的顶点的集合(即,在二进制图中遵循具有k条边或更少边的路径)。
特别是,k-hop邻域搜索方法使我们能够为原始图中不同跳数的每个采样源节点采样相似的邻居。此外,可以通过增加跳数来保持高阶邻近度。
在这里插入图片描述

Graph Embedding是一种将图中的节点映射到低维向量空间的技术。通过Graph Embedding,我们可以将图中的节点表示为具有语义信息的向量,从而方便进行机器学习和数据挖掘任务。Graph Embedding可以用于图数据的可视化、节点分类、链接预测等任务。 在给定的引用中,提到了两种Graph Embedding的方法:DeepWalk和Struc2Vec。 1. DeepWalk是一种基于随机游走的Graph Embedding方法。它通过在图中进行随机游走来模拟节点之间的邻近关系,并将游走序列作为训练样本来学习节点的向量表示。具体步骤如下[^1]: - 从图中的每个节点开始,进行多次随机游走,得到游走序列。 - 使用Skip-gram模型训练节点的向量表示,使得节点的向量能够预测其周围节点出现的概率。 - 得到节点的向量表示,可以用于节点分类、链接预测等任务。 2. Struc2Vec是一种基于图的结构相似性的Graph Embedding方法。它通过考虑节点的邻居节点和邻居节点之间的关系来学习节点的向量表示。具体步骤如下: - 构建图的邻接矩阵,表示节点之间的连接关系。 - 使用随机游走的方式获取节点的邻居节点序列。 - 使用Skip-gram模型训练节点的向量表示,使得节点的向量能够预测其邻居节点出现的概率。 - 得到节点的向量表示,可以用于节点分类、链接预测等任务。 以上是关于Graph Embedding的简要介绍和两种常见方法的说明。如果你对具体的实现细节或其他相关问题感兴趣,请告诉我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值