计算机视觉杂记(1)

计算机视觉

一:计算机视觉领域暂存的比较难以解决的问题:

1、对照片的密集标记

2、将识别问题和标记问题整合

3、动作场景的识别

4、计算机视觉的愿景是至少让计算机达到看图讲故事的水平

二:K最近邻与线性分类器

L1距离算法,也就是欧式距离

矢量化

FLANN实例库

可采用交叉验证的方法来提高精度

算法缺点:测试时过于耗费计算能力,准确率低

三:一些Tips

绝不能使用测试集来调优,测试集数据只能使用一次,即在训练完成后,评价最终的模型时使用。

在训练集中取出一部分数据来进行调优,称之为验证集。

当训练集较小时,可以采用交叉验证的方法。

四:线性分类

评分函数:原始图像数据到类别分值的映射

损失函数:

将线性分类器看作是模板匹配。

五:多类支持向量机函数的损失函数
针对第i个数据的多类SVM的损失函数定义如下:

Li=jyimax(0,SjSyi+δ)

折叶损失:
max(0,-)

六:线性分类和参数化学习:
能够使我们输入一组数据和类别标签,然后从中学到一个输入值到预测值的映射关系,而我们只需定义一组参数并优化这些参数。

例:狗猫马三类图片分类
如下:

Animalsimage1Coolimage3
-0.39-4.611.03
1.493.28-2.37
4.211.46-2.27

计算狗类的损失:
max(0,1.49-(-0.39)+1)+max(0,4.21-(-0.39)+1)=8.48>0 (错误分类)
(其中-0.39是正确预测的预测分。)

计算猫类的损失值:
max(0,-4.61-3.28+1)+max(0,1.46-3.28+1)=0 (正确分类)

计算出的损失值越小,预测越准确。

向损失函数添加一个惩罚项R(w)
最常用的正则惩罚项是L2范式

Rw=klw2kl

由上式代入Li得:

Li=jyimax(0,WjXiWyiXi+δ)

故可以得到完整的多类SVM损失函数:

L=1NiLi+lamdaR(w)(lamdaN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值