基本概念
辐射能量
辐射能量Radiant Energy Q Q Q:描述电磁场的能量,单位为焦耳J。
辐射功率
辐射功率/通量Radiant Power/Flux
P
/
Φ
P/\Phi
P/Φ:单位时间的辐射能量,单位为瓦特W。
P
=
Φ
=
d
Q
d
t
P=\Phi=\frac{\text{d} Q}{\text{d} t}
P=Φ=dtdQ
辐射照度
辐射照度Irradiance
E
E
E:单位面积上的辐射通量,单位为W/m^2。
E
=
d
Φ
d
A
E = \frac{\text{d}\Phi}{\text{d} A}
E=dAdΦ表面的辐射照度遵循朗伯特余弦定理Lambert’s Cosine Law。如下图所示,设光线垂直入射时照度为
E
0
E_0
E0,当光线与表面法线呈
θ
\theta
θ角时,照度为
E
cos
θ
E\cos\theta
Ecosθ。
立体角
立体角Solid Angle
Ω
/
ω
\Omega/\omega
Ω/ω:表面在球面上的投影面积与球半径平方的比值,单位为球面度sr。球的立体角为
4
π
4\pi
4π。
辐射强度
辐射强度Radiant Intensity
I
I
I:单位立体角的辐射通量,单位为W/sr。通常用来描述光源朝某个方向发射的辐射功率。
I
=
d
Φ
d
ω
I = \frac{\text{d}\Phi}{\text{d}\omega}
I=dωdΦ
辐射亮度
辐射亮度Radiance
L
L
L:单位投影面积、单位立体角的辐射通量,单位为W/sr/m^2。
L
=
d
2
Φ
d
ω
d
A
⊥
=
d
2
Φ
d
ω
d
A
cos
θ
L = \frac{\text{d}^2\Phi}{\text{d}\omega\text{d}A_\perp } = \frac{\text{d}^2\Phi}{\text{d}\omega\text{d}A\cos\theta}
L=dωdA⊥d2Φ=dωdAcosθd2Φ入射辐射亮度
L
=
d
E
d
ω
cos
θ
L = \frac{\text{d}E}{\text{d}\omega\cos\theta}
L=dωcosθdE意为与表面法向呈
θ
\theta
θ角入射的、占据立体角为
d
ω
\text{d}\omega
dω的、辐射亮度为
L
L
L的光线,在表面产生的辐射照度
d
E
=
L
cos
θ
d
ω
\text{d}E=L\cos\theta\text{d}\omega
dE=Lcosθdω。
辐射亮度最贴近光线的概念,不会随着距离的平方衰减。辐射亮度可以通过亮度计测量。如下图所示,距物体表面一定距离,以某一角度进行观测。亮度计接收的是垂直于光学镜头光轴特定面积内的辐射通量,与辐射亮度定义中的单位投影面积对应。
相机实际是一种亮度计。相机镜头收集物体表面反射后、一定立体角中的光线。像素表面接收的辐射照度
E
E
E与光线场景辐射亮度
L
L
L呈正比,具体关系如下
E
=
π
4
D
2
f
2
cos
4
α
L
E=\frac{\pi}{4}\frac{D^2}{f^2}\cos^4\alpha L
E=4πf2D2cos4αL其中,
D
D
D为镜头光圈直径,
f
f
f为镜头焦距,
α
\alpha
α为观测点与光轴的夹角。推导过程如下图所示
像素将接收的照度转换为灰度输出,可以参考【EMVA1288 相机噪声模型】
双向反射分布函数
双向反射分布函数Bidirectional Reflectance Distribution Function, BRDF
f
r
(
ω
i
,
ω
o
)
f_r(\omega_i,\omega_o)
fr(ωi,ωo):描述物体表面反射特性的函数,定义为
f
r
(
ω
i
,
ω
o
)
=
d
L
(
ω
o
)
d
E
(
ω
i
)
=
d
L
(
ω
o
)
L
(
ω
i
)
cos
θ
d
ω
f_r(\omega_i,\omega_o) = \frac{\text{d}L(\omega_o)}{\text{d}E(\omega_i)}=\frac{\text{d}L(\omega_o)}{L(\omega_i)\cos\theta\text{d}\omega}
fr(ωi,ωo)=dE(ωi)dL(ωo)=L(ωi)cosθdωdL(ωo)其中
ω
i
\omega_i
ωi为入射光线方向,
ω
o
\omega_o
ωo为出射光线方向。
反照率为 ρ \rho ρ漫反射表面的BRDF为 f r = ρ π f_r=\frac{\rho}{\pi} fr=πρ,推导过程参考Deriving Lambertian BRDF from first principles
点光源照射的漫反射平面反射的辐射亮度
L
=
ρ
π
P
4
π
r
2
cos
θ
L=\frac{\rho}{\pi}\frac{P}{4\pi r^2}\cos\theta
L=πρ4πr2Pcosθ
由BRDF,可以引入渲染方程
L
o
(
ω
o
)
=
L
e
(
ω
o
)
+
∫
f
r
(
ω
i
,
ω
o
)
L
i
(
ω
i
)
cos
θ
d
ω
i
L_o(\omega_o)=L_e(\omega_o)+\int{f_r(\omega_i,\omega_o)L_i(\omega_i)\cos\theta}\text{d}\omega_i
Lo(ωo)=Le(ωo)+∫fr(ωi,ωo)Li(ωi)cosθdωi其中,
d
E
(
ω
i
)
=
L
i
(
ω
i
)
cos
θ
d
ω
i
\text{d}E(\omega_i) = L_i(\omega_i)\cos\theta\text{d}\omega_i
dE(ωi)=Li(ωi)cosθdωi为入射光在物体表面产生的辐射照度,
L
e
L_e
Le为物体自发光辐射亮度。
辐射度量学与光度学单位
辐射度量学 | Radiometry | 单位 | 符号 | 光度学 | Photometry | 单位 |
---|---|---|---|---|---|---|
辐射能量 | Radiant Energy | J J J | Q Q Q | 光能量 | Luminous Energy | Talbot(T) = l m ⋅ s lm \cdot s lm⋅s |
辐射功率/通量 | Radiant Power/Flux | W W W | P , Φ P,\Phi P,Φ | 光通量 | Luminous Flux | Lumen(lm) = c d ⋅ s r cd \cdot sr cd⋅sr |
辐射照度 | Irradiance | W / m 2 W/m^2 W/m2 | E E E | 光照度 | Illumiance | Lux(lx) = c d ⋅ s r / m 2 cd \cdot sr/m^2 cd⋅sr/m2 = l m / m 2 lm/m^2 lm/m2 |
辐射强度 | Radiant Intensity | W / s r W/sr W/sr | I I I | 光强度 | Luminous Intensity | Candela(cd) |
辐射亮度 | Radiance | W / ( m 2 ⋅ s r ) W/(m^2 \cdot sr) W/(m2⋅sr) | L L L | 光亮度 | Luminance | nit = c d / m 2 cd/m^2 cd/m2 |