基于mpc和能量控制的燃料电池混合动力汽车优化策略,基于MPC的燃料电池混合动力汽车能量管理策略优化: 基于预测域内车速已知的最优控制问题模型,动态规划和PMP方法求解燃料电池输出功率的最优策略。

基于mpc的燃料电池混合动力汽车能量管理策略
1.研究对象为燃料电池-动力电池混合动力汽车
2.假设预测域内车速已知,在模型预测控制框架下构建最优控制问题
3.分别利用动态规划和pmp求解预测域内的能量管理问题,得到最优的燃料电池输出功率。

ID:29650717957107463

咸鱼的一天哦


基于MPC的燃料电池混合动力汽车能量管理策略

近年来,燃料电池混合动力汽车在能源管理领域引起了广泛关注。为了实现燃料电池与动力电池之间的优化协同控制,研究者们提出了基于模型预测控制(Model Predictive Control,MPC)框架的能量管理策略。本文以燃料电池-动力电池混合动力汽车为研究对象,假设预测域内车速已知,结合动态规划和最优性原理(Pontryagin’s Minimum Principle,PMP)求解能量管理问题,旨在得到最优的燃料电池输出功率。

在燃料电池混合动力汽车中,燃料电池和动力电池是两种不同的能量供应系统。燃料电池具有高能量密度和长续航里程的优势,而动力电池则具有高功率输出和短充电时间的特点。合理地调配这两种能量源的使用,可以提高汽车的能源利用效率和性能表现。

首先,我们根据预测域内车速已知的假设,构建了基于MPC框架的最优控制问题。在预测域内,我们需要确定每个离散时间步长的燃料电池输出功率,以使得整个预测域内的目标函数最小化。为了得到最优解,我们采用了动态规划和PMP两种方法进行求解。

动态规划是一种常用的优化方法,其基本思想是将原问题分解为一系列子问题,并通过求解子问题的最优解来得到原问题的最优解。在本文中,我们将动态规划应用于预测域内的能量管理问题。通过构建一个备选能量输出序列的状态-动作-状态转移模型,我们可以通过动态规划算法求解出最优的燃料电池输出功率序列,从而使得整个预测域内的目标函数最小化。

此外,我们还采用了PMP方法求解能量管理问题。PMP是一种通过构建Hamiltonian函数,并借助最优性原理得到最优控制的方法。在本文中,我们利用PMP方法求解预测域内的能量管理问题,得到最优的燃料电池输出功率。

通过对动态规划和PMP方法的比较分析,我们可以得出以下结论:动态规划方法适用于求解具有离散状态和离散控制的最优化问题,而PMP方法则适用于求解具有连续状态和连续控制的最优化问题。在燃料电池混合动力汽车能量管理问题中,动态规划可以得到更精确的解,而PMP方法更加高效。

综上所述,基于MPC的燃料电池混合动力汽车能量管理策略是一种有效的方法,可以通过合理地调配燃料电池和动力电池的使用来提高汽车的能源利用效率和性能表现。未来的研究方向可以进一步优化算法,考虑更多的约束条件,并将该策略应用于实际车辆中,以验证其在实际应用中的效果。

本文将基于MPC的燃料电池混合动力汽车能量管理策略进行了详细阐述,并结合动态规划和PMP方法进行了求解。通过分析比较两种方法的适用性和优劣势,为燃料电池混合动力汽车能量管理领域的研究提供了一定的参考和借鉴。希望本文能够为相关领域的研究者提供一定的启示和思路,推动燃料电池混合动力汽车能量管理策略的进一步发展。

【相关代码,程序地址】:http://fansik.cn/717957107463.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值