模型预测控制(MPC)在混合动力汽车能量管理策略开发上的运用

本文探讨了模型预测控制(MPC)在混合动力汽车中如何通过结合车速预测模型(如BP或RBF神经网络)和动态规划算法,实现燃油经济性的全局优化。作者分享了动态规划和神经网络预测模型的程序,以及它们如何提升实时优化性能,有助于提升科学研究成果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型预测控制(MPC)在混合动力汽车能量管理策略开发上的运用。
利用车速预测模型(BP或者RBF神经网络,预测模型资料也有发在其他链接)根据预测的信息对车辆进行优化控制,可以对混动汽车的能量管理具有一定的参考意义。
动态规划算法作为全局优化的代表,恰好作为模型预测控制的算法求解器,再与车速预测模型结合实现基于模型预测(MPC)的能量管理策略的预测时预内的局部最优近似全局最优的优化效果,实现混动车辆的燃油经济性最优 
——和模型预测MPC结合运用,加上预测模型可实现在线预测近似实时最优  (本人编写DP就是与MPC相结合)
逆向迭代,正向求解(混动整车能量管理做到全局最优)
——(动态规划网上找不到资料,1000多行的代码)
——代码全是硬货,理解了自己就可以运用到自己优化的整车上,SCI EIlunwen轻松拿下,本人发表2篇SCI一区全靠它,只要搞懂随随便便出lunwen 
提供动态规划算法程序(DP)?神经网络预测模型程序(GA-BP RBF)=模型预测控制(MPC)——识货的大神欢迎咨询交流 *参考lunwen有需要也可提供


相关代码,程序地址:http://imgcs.cn/lanzoun/755691322290.html
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值